Using Parsed*SyntaxBuilder interface and SyntaxParserResult was
unnecessarily complicated. Use SyntaxParsingContext based node creation.
No behavior change.
```
@_specialize(exported: true, spi: SPIGroupName, where T == Int)
public func myFunc() { }
```
The specialized entry point is only visible for modules that import
using `_spi(SPIGroupName) import ModuleDefiningMyFunc `.
rdar://64993425
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
Code completion used to avoid forming single expression closures/function
bodies when the single expression contained the code completion expression
because a contextual type mismatch could result in types not being applied
to the AST, giving no completions.
Completions that have been migrated to the new solver-based completion
mechanism don't need this behavior, however. Rather than trying to guess
whether the type of completion we're going to end up performing is one of
the ones that haven't been migrated to the solver yet when parsing, instead
just always form single-expression closures/function bodies (like we do for
regular compilation) and undo the transformation if and when we know we're
going to perform a completion kind we haven't migrated yet.
Once all completion kinds are migrated, the undo-ing code can be removed.
Introduce availability macros defined by a frontend flag.
This feature makes it possible to set the availability
versions at the moment of compilation instead of having
it hard coded in the sources. It can be used by projects
with a need to change the availability depending on the
compilation context while using the same sources.
The availability macro is defined with the `-define-availability` flag:
swift MyLib.swift -define-availability "_iOS8Aligned:macOS 10.10, iOS 8.0" ..
The macro can be used in code instead of a platform name and version:
@available(_iOS8Aligned, *)
public func foo() {}
rdar://problem/65612624
This was happening in the error recovery path when parsing accessors
on a pattern binding declaration that does not bind any variables, eg
let _: Int { 0 }
Expression evaluation in lldb wraps the entire user-written expression
in a new function body, which puts any new declarations written by the
user in local context.
There is a mechanism where declarations can get moved to the top level,
if they're only valid at the top level (imports, extensions etc), or
if the name of the declaration begins with '$'. This mechanism used to
actually add the declaration to the SourceFile's TopLevelDecls list,
which would break ASTScope invariants about source ranges being
monotonically increasing and non-overlapping.
Instead, we use the new 'hoisted' flag to mark the declarations as
hoisted, which leaves them syntactically in their original location
in the AST, but treats them as top level in SILGen and IRGen.
Part of <rdar://problem/53971116>.
This allows the syntax parser library and SwiftSyntax to successfully
parse code using this experimental feature without requiring an API
to pass compiler flags into the parser.
Closurea can become 'async' in one of two ways:
* They can be explicitly marked 'async' prior to the 'in'
* They can be inferred as 'async' if they include 'await' in the body
Previously we had two representations for the 'where' clause of a
parsed declaration; if the declaration had generic parameters of
its own, we would store them in the GenericParamList, otherwise
we would store them separately in a TrailingWhereClause instance.
Since the latter is more general and also used for protocols and
extensions, let's just use it for everything and simplify
GenericParamList in the process.
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
Currently when parsing a SourceFile, the parser
gets handed pointers so that it can write the
interface hash and collected tokens directly into
the file. It can also call `setSyntaxRoot` at
the end of parsing to set the syntax tree.
In preparation for the removal of
`performParseOnly`, this commit formalizes these
values as outputs of `ParseSourceFileRequest`,
ensuring that the file gets parsed when the
interface hash, collected tokens, or syntax tree
is queried.
The parser used to rewrite
if let x: T
into
if let x: T?
This transformation is correct at face value, but relied on being able
to construct TypeReprs with bogus source locations. Instead of having
the parser kick semantic analysis into shape, let's perform this
reinterpretation when we resolve if-let patterns in statement
conditions.
Previously it was backtracking for the duration of the whole property body which was preventing re-use of previously parsed nodes for incremental re-parsing.
Because we were previously performing SIL parsing
during `performSema`, we were relying on the
pipeline being stopped before reaching the SIL
pipeline passes.
However under a lazy evaluation model, we can't
rely on that. Instead, just return an empty
SILModule if we encounter a parsing error.
that allows arbitrary `label: {}` suffixes after an initial
unlabeled closure.
Type-checking is not yet correct, as well as code-completion
and other kinds of tooling.
Accept trailing closures in following form:
```swift
foo {
<label-1>: { ... }
<label-2>: { ... }
...
<label-N>: { ... }
}
```
Consider each labeled block to be a regular argument to a call or subscript,
so the result of parser looks like this:
```swift
foo(<label-1>: { ... }, ..., <label-N>: { ... })
```
Note that in this example parens surrounding parameter list are implicit
and for the cases when they are given by the user e.g.
```swift
foo(bar) {
<label-1>: { ... }
...
}
```
location of `)` is changed to a location of `}` to make sure that call
"covers" all of the transformed arguments and parser result would look
like this:
```swift
foo(bar,
<label-1>: { ... }
)
```
Resolves: rdar://problem/59203764
Also extend returned object from simplify being an expression to
`TrailingClosure` which has a label, label's source location and
associated closure expression.
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes
Delete `@differentiable` attribute `jvp:` and `vjp:` arguments for derivative
registration. `@derivative` attribute is now the canonical way to register
derivatives.
Resolves TF-1001.
Remove the `EvaluateConditionals` flags from the
parser, and instead query the source file.
This commit also changes ParserUnit such that it
doesn't evaluate #if conditions by default, as
none of its clients appear to require it. The
only client that wasn't explicitly disabling #if
evaluation and is processing the resulting AST is
swift-indent, so this commit also adds a test to
ensure it continues to work correctly with #if
decls.
Instead of interleaving typechecking and parsing
for SIL files, first parse the file for Swift
decls by skipping over any intermixed SIL decls.
Then we can perform type checking, and finally SIL
parsing where we now skip over Swift decls.
This is an intermediate step to requestifying the
parsing of a source file for its Swift decls.