Add requirements to the Builder concept to construct generic signatures and substitution maps. Then introduce a `subst` requirement that uses the substitution map to call through to the builder's notion of type (ref) substitution.
This infrastructure is sufficient to model the notion of a RuntimeGenericSignature.
Until recently, `MemoryReader` had a single function `resovlePointer` which did two things, and has a somewhat vague name. The two things were:
1. Tool-specific mapping between real addresses and tagged addresses (first implemented in `swift-reflection-dump` and then later in lldb)
2. Finding a "symbol" for a given address
Recently, `resolvePointerAsSymbol` was added, which overloaded the term "resolve" and it added another way to deal with symbols for addresses. Symbols themselves were a bit muddled, as `swift-reflection-dump` was dealing with dynamic symbols aka bindings, while lldb was dealing in regular (static) symbols.
This change separates these two parts of functionality, and also divides symbol lookup into two cases. The API surface will now be:
1. `resolvePointer` for mapping/tagging addresses
3. `getSymbol` for looking up a symbol for an address
4. `getDynamicSymbol` for looking up a dyld binding for an address
Note: each of these names could be improved. Some alternative terms: `lookup` instead of `get`, `Binding` or `BindingName` instead of `DynamicSymbol`. Maybe even another term instead of "resolve". Suggestions welcome!
Currently, `swift-reflection-dump` supports `getDynamicSymbol` but not `getSymbol`. For lldb it's the reverse, `getSymbol` is supported but `getDynamicSymbol` needs to be implemented.
For everything but lldb, this change is NFC. For lldb it fixes a bug where `LLDBMemoryReader` returns regular symbols where we should instead be returning dynamic symbols.
Add a few includes of Optional.h and Hashing.h. These files are failing
ot build in the "next" branch due to changes in llvm's own includes, but
it's general goodness to include them on main as well.
Most of the new inspection logic is in Remote Mirror. New code in swift-inspect calls the new Remote Mirror functions and formats the resulting information for display.
Specific Remote Mirror changes:
* Add a call to check if a given metadata is an actor.
* Add calls to get information about actors and tasks.
* Add a `readObj` call to MemoryReader that combines the read and the cast, greatly simplifying code chasing pointers in the remote process.
* Add a generalized facility to the C shims that can allocate a temporary object that remains valid until at least the next call, which is used to return various temporary arrays from the new calls. Remove the existing `lastString` and `lastChunks` member variables in favor of this new facility.
Swift-inspect changes:
* Add a new dump-concurrency command.
* Add a new `ConcurrencyDumper.swift` file with the implementation. The dumper needs to do some additional work with the results from Remote Mirror to build up the task tree and this keeps it all organized.
* Extend `Inspector` to query the target's threads and fetch each thread's current task.
Concurrency runtime changes:
* Add `_swift_concurrency_debug` variables pointing to the various future adapters. Remote Mirror uses these to provide a better view of a tasks's resume pointer.
rdar://85231338
This new function allows subclasses to attempt to resolve a pointer to
a symbol before any memory is read, which can be potentially expensive
(for example, in LLDB).
In order to be able to debug, for example, a Linux process from a macOS host, we
need to be able to initialize a ReflectionContext without Objective-C
interoperability. This patch turns ObjCInterOp into another template trait, so
it's possible to instantiate a non-ObjC MetadataReader on a system built with
ObjC-interop (but not vice versa).
This patch changes the class hierarchy to
TargetMetadata<Runtime>
|
TargetHeapMetadata<Runtime>
|
TargetAnyClassMetadata<Runtime>
/ \
/ TargetAnyClassMetadataObjCInterop<Runtime>
/ \
TargetClassMetadata<Runtime, TargetAnyClassMetadata<Runtime>> \
\
TargetClassMetadata<Runtime, TargetAnyClassMetadataObjCInterop<Runtime>>
TargetAnyClassMetadataObjCInterop inherits from TargetAnyClassMetadata because
most of the implementation is the same. This choice makes TargetClassMetadata a
bit tricky. In this patch I went with templating the parent class.
rdar://87179578
We remove the existing `swift_reflection_iterateAsyncTaskAllocations` API that attempts to provide all necessary information about a tasks's allocations starting from the task. Instead, we split it into two pieces: `swift_reflection_asyncTaskSlabPointer` to get the first slab for a task, and `+swift_reflection_asyncTaskSlabAllocations` to get the allocations in a slab, and a pointer to the next slab.
We also add a dummy metadata pointer to the beginning of each slab. This allows tools to identify slab allocations on the heap without needing to locate every single async task object. They can then use `swift_reflection_asyncTaskSlabAllocations` on such allocations to find out about the contents.
rdar://82549631
We remove the existing `swift_reflection_iterateAsyncTaskAllocations` API that attempts to provide all necessary information about a tasks's allocations starting from the task. Instead, we split it into two pieces: `swift_reflection_asyncTaskSlabPointer` to get the first slab for a task, and `+swift_reflection_asyncTaskSlabAllocations` to get the allocations in a slab, and a pointer to the next slab.
We also add a dummy metadata pointer to the beginning of each slab. This allows tools to identify slab allocations on the heap without needing to locate every single async task object. They can then use `swift_reflection_asyncTaskSlabAllocations` on such allocations to find out about the contents.
rdar://82549631
Mangling can fail, usually because the Node structure has been built
incorrectly or because something isn't supported with the old remangler.
We shouldn't just terminate the program when that happens, particularly
if it happens because someone has passed bad data to the demangler.
rdar://79725187
MetadataReader can be given corrupt or garbage data and we need to be able to handle it gracefully. When reading metadata, the full size to read is calculated from partial data. When we're given bad data, these calculated sizes can be enormous, up to 4GB. Trying to read that much data can cause address space exhaustion which leads to unpleasantness.
To avoid this, fix a limit of 1MB on metadata sizes, and fail early if the size is larger. No real-world metadata should ever be that large.
We also switch these potentially large calls to use the readBytes variant that returns a unique_ptr, rather than allocating a buffer and reading into it. Our clients typically implement that as the primitive, so this avoids an unnecessary extra data copy and extra address space usage for them. Clients that implement reading into a provided buffer as the primitive should see the same performance as before.
rdar://78621784
Implement name mangling, type metadata, runtime demangling, etc. for
global-actor qualified function types. Ensure that the manglings
round-trip through the various subsystems.
Implements rdar://78269642.
These calls can fail when passed absurd sizes, which can happen when we try to read data that's corrupt or doesn't contain what we think it should. Fail gracefully instead of crashing.
rdar://78210820
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
* Limit the recursion depth when trying to get the mangling for a context descriptor
This should help guard against corrupted data in the target app when debugging.
* Only decrement the recursion limit once for each parent visit
swift::reflection::TypeInfo for (Clang-)imported non-Objective-C types. This is
needed to reflect on the size mixed Swift / Clang types, when no type metadata
is available for the C types.
This is a necessary ingredient for the TypeRef-based Swift context in
LLDB. Because we do not have reflection metadata for pure C types in Swift,
reflection cannot compute TypeInfo for NominalTypeRefs for those types. By
providing this callback, LLDB can supply this information for DWARF, and
reflection can compute TypeInfos for mixed Swift/C types.
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
This removes the last reference to the `llvm::` namespace in the
standard library. All uses of the LLVMSupport library now are
namespaced into the `__swift::__runtime` namespace. This allows us to
incrementally vend the LLVMSupport library and make the separation
explicit.
Resolve mangled names containing symbolic references to indirect opaque type descriptors from other
dylibs by demangling the referenced symbol name, like we do for other kinds of context descriptor.
Add an OpaqueArchetypeTypeRef that can represent unresolved opaque types in the Reflection library.
This code rearchitects and simplifies the projectEnumValue support by
introducing a new `TypeInfo` subclass for each kind of enum, including trivial,
no-payload, single-payload, and three different classes for multi-payload enums:
* "UnsupportedEnum" that we don't understand. This returns "don't know" answers for all requests in cases where the runtime lacks enough information to accurately handle a particular enum.
* MP Enums that only use a separate tag value. This includes generic enums and other dynamic layouts, as well as enums whose payloads have no spare bits.
* MP Enums that use spare bits, possibly in addition to a separate tag. This logic can only be used, of course, if we can in fact compute a spare bit mask that agrees with the compiler.
The final challenge is to choose one of the above three handlings for every MPE. Currently, we do not have an accurate source of information for the spare bit mask, so we never choose the third option above. We use the second option for dynamic MPE layouts (including generics) and the first for everything else.
TODO: Once we can arrange for the compiler to expose spare bit mask data, we'll be able to use that to drive more MPE cases.
ownsAddress was a simple range check on images, but that won't find Metadatas that get allocated on the heap. If an address isn't found, try reading it as a Metadata and doing a range check on the type context descriptor too.
rdar://problem/60981575