When creating a specialized witness table, we need to get the right specialized conformance.
In IRGen don't emit associated conformance witness table entries if the protocol is not a class protocol.
In this case the associated type can never be used to create an existential. Therefore such a witness table entry is never used at runtime in embedded swift.
Fixes a compiler crash
rdar://146448091
Extend the metadata representation of protocol conformance descriptors
to include information about the global actor to which the conformance is
isolated (when there is one), as well as the conformance of that type to
the GlobalActor protocol. Emit this metadata whenever a conformance is
isolated.
When performing a conforms-to-protocol check at runtime, check whether
the conformance that was found is isolated. If so, extract the serial
executor for the global actor and check whether we are running on that
executor. If not, the conformance fails.
Noncopyable types may have user-defined code in their `deinit`s that requires
passing the type's generic parameters, so a box for a captured noncopyable type
needs to capture the generic environment even when the captured type is fixed-
layout. Fixes rdar://138958210.
When compiling with library evolution and a pre-Swift 6.0 deployment
target, a mismatch between the notion of resilience used for determining
whether a protocol that inherits Sendable might need to be treated as
"dependent" differed from how other parts of IR generation decided
whether to conformance should be considered as resilient. The
difference came when both the protocol and its conforming type are in
the same module as the user.
Switch over to the "is this conformance resilient?" query that takes
into account such conformances.
Fixes rdar://136586922.
The main change here is to associate a witness table with a `ProtocolConformance` instead of a `RootProtocolConformance`.
A `ProtocolConformance` is the base class and can be a `RootProtocolConformance` or a `SpecializedProtocolConformance`.
Motivated by need for protocol-based dynamic dispatch, which hasn't been possible in Embedded Swift due to a full ban on existentials. This lifts that restriction but only for class-bound existentials: Class-bound existentials are already (even in desktop Swift) much more lightweight than full existentials, as they don't need type metadata, their containers are typically 2 words only (reference + wtable pointer), don't incur copies (only retains+releases).
Included in this PR:
[x] Non-generic class-bound existentials, executable tests for those.
[x] Extension methods on protocols and using those from a class-bound existential.
[x] RuntimeEffects now differentiate between Existential and ExistentialClassBound.
[x] PerformanceDiagnostics don't flag ExistentialClassBound in Embedded Swift.
[x] WTables are generated in IRGen when needed.
Left for follow-up PRs:
[ ] Generic classes support
If a constrained extension has fewer conformance requirements
than the nominal type declaration, because some of the type
parameters of the nominal type are fixed to concrete types by
the extension, we would run into trouble because interface
type substitution does not correctly handle this case.
Applying an identity substitution map to an interface type
does not look up concrete types in the output generic
signature, so we get back a type parameter that is not valid.
getReducedType() has a hack to deal with this. I'd like to
get rid of the hack and fix interface type substitution to
do this correctly, but until then, this will do.
Fixes https://github.com/swiftlang/swift/issues/76479
A change to the way we determined whether a protocol conformance is
"dependent" for marker protocols caused an ABI break for
Sendable-refining protocols built with pre-6.0 Swift compilers. The
fix for this issue (https://github.com/swiftlang/swift/pull/75769)
gated the change on deployment target.
The deployment target change fixed the original problem, then caused a
related issue when a project mixes deployment targets (pre-6.0 and
6.0+) with non-resilient protocols. Exempt non-resilient protocols from
this change so we get consistent behavior.
Fixes rdar://134953989.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
Within Swift 6.0, we expanded an optimization for witness tables that
that allowed direct access to the witness table for conformances to
any protocol that can never have a witness table, rather than requiring
access through `swift_getWitnessTable` that might need to instantiate
the witness table.
The previous optimization only covered Objective-C protocols, but Swift
6.0 expanded that to marker protocols (such as `Sendable`) as well.
However, this constituted an API break when a Swift 6.0 compiler uses
a witness table that comes from a library built with an earlier version
of Swift, when the protocol inherits from Sendable but the conformance
to that protocol otherwise does not require an instantiation function.
In such cases, Swift 6.0 would generate code that directly accesses
the uninstantiated witness table symbol, which will have NULL entries
for any conformance in it that was considered "dependent" by the
earlier Swift compiler.
Introduce a deployment target check to guard the new optimization.
Specifically, when building for a deployment target that predates
Swift 6.0, treat conformances to marker protocols as if they might be
dependent (so the access patterns go through `swift_getWitnessTable`
for potential instantiation on older platforms). For newer deployment
targets, use the more efficent direct access pattern.
Fixes rdar://133157093.
Conflicts:
- `test/Interop/Cxx/class/method/methods-this-and-indirect-return-irgen-itanium.swift`
previously fixed on rebranch, now fixed on main (slightly differently).
This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697