Getting the protocols of an arbitrary type doesn't make sense, so start phasing this out by introducing specialized entry points that do make sense:
- get the inherited protocols of a ProtocolDecl
- get the conforming protocols for an associated type or generic
type parameter
- (already present) ask for the protocols to which a nominal type conforms
Swift SVN r26411
The deallocating parameter convention is a new convention put on a
non-trivial parameter if the caller function guarantees to the callee
that the parameter has the deallocating bit set in its object header.
This means that retains and releases do not need to be emitted on these
parameters even though they are non-trivial. This helps to solve a bug
in +0 self and makes it trivial for the optimizer to perform
optimizations based on this property.
It is not emitted yet by SILGen and will only be put on the self
argument of Deallocator functions.
Swift SVN r26179
This reduces the size of protocoll witnesses in the dylib by 12%, resulting in an overall dylib code size reduction of 1.7%.
And there are a few performance improvements for -Onone: CaptureProp: +34%, RangeAssignment: +16%.
Swift SVN r25269
with more explicit/semantic conversions in and out.
Using a PointerUnion with overlapping pointer types
is both error-prone and pretty close to illegible.
Swift SVN r24707
OpaqueStorageTypeInfo uses iNNN types that don't always have the correct alloc size for an expected
size at the LLVM level. This needs to be fixed before my partial apply closure fixes can hold.
Swift SVN r24551
In order to deal with generic indirect value captures, we need to be able to bind their type metadata in the partial apply forwarder and heap object destructor to have access to the value operations for that type. NecessaryBindings gives us a way to do that and clean up our ad-hoc polymorphic argument forwarding we had before. N(intended)FC yet, aside from some harmless reordering of operations, since we also need to implement NonFixedOffsets for heap objects to be fully operational.
Swift SVN r24526
When dealing with multiple levels of generic parameters, the mapping
from potential archetypes down to actual archetypes did not have
access to the archetypes for outer generic parameters. When same-type
requirements equated a type from the inner generic parameter list with
one from the outer generic parameter list, the reference to the outer
generic parameter list's type would remain dependent. For example,
given:
struct S<A: P> {
init<Q: P where Q.T == A>(_ q: Q) {}
}
we would end up with the dependent type for A (τ_0_0) in the same-type
constraint in the initializer requirement.
Now, notify the ArchetypeBuilder of outer generic signatures (and,
therefore, outer generic parameters), so that it has knowledge of the
mapping from those generic parameters to the corresponding
archetypes. Use that mapping when translating potential archetypes to
real archetypes. Additionally, when a potential archetype is mapped to
a concrete type (via a same-type constraint to a concrete type),
substitute archetypes for any dependent types within the concrete
type.
Remove a bunch of hacks in the compiler that identified dependent
types in "strange" places and tried to map them back to
archetypes. Those hacks handled some narrow cases we saw in the
standard library and some external code, but papered over the
underlying issue and left major gaps.
Sadly, introduce one hack into the type checker to help with the
matching of generic witnesses to generic requirements that follow the
pattern described above. See ConstraintSystem::SelfTypeVar; the proper
implementation for this matching involves substituting the adoptee
type in for Self within the requirement, and synthesizing new
archetypes from the result.
Fixes rdar://18435371, rdar://18803556, rdar://19082500,
rdar://19245317, rdar://19371678 and a half dozen compiler crashers
from the crash suite. There are a few other radars that I suspect this
fixes, but which require more steps to reproduce.
Swift SVN r24460
IRGen uses a typedef, SpareBitVector, for its principal
purpose of tracking spare bits. Other uses should not
use this typedef, and I've tried to follow that, but I
did this rewrite mostly with sed and may have missed
some fixups.
This should be almost completely NFC. There may be
some subtle changes in spare bits for witness tables
and other off-beat pointer types. I also fixed a bug
where IRGen thought that thin functions were two
pointers wide, but this wouldn't have affected anything
because we never store thin functions anyway, since
they're not a valid AST type.
This commit repplies r24305 with two fixes:
- It fixes the computation of spare bits for unusual
integer types to use the already-agreed-upon type
size instead of recomputing it. This fixes the
i386 stdlib build. Joe and I agreed that we should
also change the size to use the LLVM alloc size
instead of the next power of 2, but this patch
does not do that yet.
- It changes the spare bits in function types back
to the empty set. I'll be changing this in a
follow-up, but it needs to be tied to runtime
changes. This fixes the regression test failures.
Swift SVN r24324
IRGen uses a typedef, SpareBitVector, for its principal
purpose of tracking spare bits. Other uses should not
use this typedef, and I've tried to follow that, but I
did this rewrite mostly with sed and may have missed
some fixups.
This should be almost completely NFC. There may be
some subtle changes in spare bits for witness tables
and other off-beat pointer types. I also fixed a bug
where IRGen thought that thin functions were two
pointers wide, but this wouldn't have affected anything
because we never store thin functions anyway, since
they're not a valid AST type.
Swift SVN r24305
storage for arbitrary values.
A buffer doesn't provide any way to identify the type of
value it stores, and so it cannot be copied, moved, or
destroyed independently; thus it's not available as a
first-class type in Swift, which is why I've labelled
it Unsafe. But it does allow an efficient means of
opaquely preserving information between two cooperating
functions. This will be useful for the adjustments I
need to make to materializeForSet to support safe
addressors.
I considered making this a SIL type category instead,
like $@value_buffer T. This is an attractive idea because
it's generally better-typed. The disadvantages are that:
- it would need its own address_to_pointer equivalents and
- alloc_stack doesn't know what type will be stored in
any particular buffer, so there still needs to be
something opaque.
This representation is a bit gross, but it'll do.
Swift SVN r23903
isn't used yet, but will be for modeling the self argument passed to an
address-only witness implementation. NFC since all this code is dead :-)
Swift SVN r23857
Previously, we were not respecting the representation of the existential
metatype and were treating all existential metatypes as if the metatype
was a thick metatype. Instead now we properly grab the instance of the
class from the existential and then query the runtime for the
objc_class. This is done via the new entrypoint
emitHeapMetadataRefForUnknownHeapObject.
I also modified emitHeapMetadataRefForHeapObject to use
emitHeapMetadataRefForUnknownHeapObject instead of
emitLoadOfObjCHeapMetadataRef since the latter does not properly handle
tagged pointers. This bug was found on inspection when Joe and I were
talking about this change.
rdar://18841292
Swift SVN r23308
Move the uniquing information for ForeignTypeMetadata behind the address point so we can share the layout between foreign classes and the existing layout for struct and enum metadata. Emit metadata records for imported structs and enums as foreign metadata candidates, and dynamically unique references to the metadata by calling swift_getForeignTypeMetadata.
Swift SVN r23081
As a stopgap till IRGen properly emits indirected class references, support direct class reference protocol conformance records. This should get us to the point we can replace the dlsym hack with the new implementation.
Swift SVN r23073
We should unique foreign struct/enum metadata the same way we do CF foreign class metadata, but for now, treat them as direct references like we do in IRGen.
Swift SVN r23072
If for some reason an eliminated dead method is called (e.g. because of a compiler bug),
then the application aborts with a readable error message.
Swift SVN r22990
When we emit a witness table, build a protocol conformance record for it, and emit the list of all conformance records into a "__swift1_proto" section of the data segment.
Swift SVN r22939
existential (and existential metatype, and unowned
class existential) values when checking for extra
inhabitants. We don't guarantee the meaningfulness
of these bits.
Fixes rdar://17431105, where this showed up as
affecting correctness in debug vs. optimized builds.
Swift SVN r22608
layouts. Introduce new SIL instructions to initialize
and open existential metatype values.
Don't actually, y'know, lift any of the restriction on
existential metatypes; just pointlessly burn extra
memory storing them.
Swift SVN r22592
Storing the root protocol outside the potential archetype meant we
could easily have forgotten to pass the right argument to
PotentialArchetype::getType(). Our current staging of archetype
construction means that nothing go it wrong today, but it's a minor
minefield for future improvements to the archetype builder.
Swift SVN r22504
Eliminate support code for lowering protocol_method instructions, and eliminate ExtraDataKind::Metadata, which is no longer needed now that SIL provides all the necessary type information at the call site.
Swift SVN r22451
This was a harmless bit of unnecessary work until John added "materializeForSet" witnesses for protocol requirements, which never exist in @objc protocols. Fixes rdar://problem/18428904.
Swift SVN r22244
Fixes crasher #003 (rdar://problem/18232605). This time, also increase the buffer size for the necessary bindings so we don't clobber memory.
Swift SVN r22118
- A spot fix in SILGen for reabstracting the result of a downcast, which fixes checked casts to function types.
- Associate the layout information in type metadata records with the most abstract representation of the type. This is the correct thing to do in cases where we need the metadata as a tag for an opaque value--if we store a value in an Any, or pass it as an unconstrained generic parameter, we must maximally reabstract it. This fixes the value semantics of existentials containing trivial metatypes.
- To ensure that we get runtime layout of structs and enums correct when they contain reabstractable types, introduce a "metadata for layout" concept, which doesn't need to describe the canonical metadata for the type, but only needs to describe a type with equivalent layout and value semantics. This is a correctness fix that allows us to correctly lay out generic types containing dependent tuples and functions, and although we don't really take advantage of it here, it's also a potential runtime performance win down the road, because we could potentially produce direct metadata for a primitive type that's layout-equivalent with a runtime-instantiated type. To aid in type safety here, push SILType deeper into IRGen in places where we potentially care about specific representations of types.
- Finally, fix an inconsistency between the runtime and IRGen's concept of what spare bits unmanaged references and thick metatypes have.
Together, these fixes address rdar://problem/16406907, rdar://problem/17822208, rdar://problem/18189508, and likely many other related issues, and also fixes crash suite cases 012 and 024.
Swift SVN r21963