package-wide resilience domain if Package CMO is enabled.
The purpose of the attribute includes:
- Indicates that certain types such as loadable types are
allowed in serialized functions in resiliently built module
if the optimization is enabled, which are otherwise disallowed.
- Used during SIL deserialization to determine whether such
functions are allowed.
- Used to determine if a callee can be inlined into a caller
that's serialized without package-cmo, e.g. with an explicit
annotation like @inlinable, where the callee was serialized
due to package-cmo.
Resolves rdar://127870822
getVarInfo() now always returns a variable with a location and scope.
To opt out of this change, getVarInfo(false) returns an incomplete variable.
This can be used to work around bugs, but should only really be used for
printing.
The complete var info will also contain the type, except for debug_values,
as its type depends on another instruction, which may be inconsistent if
called mid-pass.
All locations in debug variables are now also stripped of flags, to avoid
issues when comparing or hashing debug variables.
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.
Renamed "getUsesMoveableValueDebugInfo" to "usesMoveableValueDebugInfo".
Clarifies the predicate from "does the receiver have the
usesMoveableValueDebugInfo field set?" to "does the receiver use moveable
value debug info?".
We want to preserve the borrow scope during switch dispatch so that move-only
checking doesn't try to analyze destructures or consumes out of it. SILGen
should mark anywhere that's a potential possibility with its own marker so that
it gets borrow checked independently.
Relax some existing pattern matches and add some unhandled instructions to the
walkers so that borrowing switches over address-only enums are properly analyzed
for incorrect consumption. Add a `[strict]` flag to `mark_unresolved_move_only_value`
to indicate a borrow access that should remain a borrow access even if the subject
is later stack-promoted from a box.
Ad-hoc requirements are now obsolete by making `remoteCall`,
`record{Argument, ReturnType}`, `decodeNextArgument` protocols
requirements and injecting witness tables for `SerializationRequirement`
conformances during IRGen.
In preparation for inserting mark_dependence instructions for lifetime
dependencies early, immediately after SILGen. That will simplify the
implementation of borrowed arguments.
Marking them unresolved is needed to make OSSA verification
conservative until lifetime dependence diagnostics runs.
This adds SIL-level support and LLVM codegen for normal results of a coroutine.
The main user of this will be autodiff as VJP of a coroutine must be a coroutine itself (in order to produce the yielded result) and return a pullback closure as a normal result.
For now only direct results are supported, but this seems to be enough for autodiff purposes.
Decls with a package access level are currently set to public SIL
linkages. This limits the ability to have more fine-grained control
and optimize around resilience and serialization.
This PR introduces a separate SIL linkage and FormalLinkage for
package decls, pipes them down to IRGen, and updates linkage checks
at call sites to include package linkage.
Resolves rdar://121409846
Specifies that the optimizer and IRGen must not add runtime calls which are not in the function originally.
This attribute is set for functions with performance constraints or functions which are called from functions with performance.
It's not clear that its worth keeping this as a
base class for SerializedAbstractClosure and
SerializedTopLevelCodeDecl, most clients are
interested in the concrete kinds, not only whether
the context is serialized.
Optionally, the dependency to the initialization of the global can be specified with a dependency token `depends_on <token>`.
This is usually a `builtin "once"` which calls the initializer for the global variable.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.
While printing them as `some P` makes sense in the AST since they
only ever appear at their definition point, in the body of a SIL
function, opaque parameter types can be referenced by various
instructions, like any other generic parameter type.
Instead of printing out `some P` or `<anonymous>` depending on
context, neither of which actually parsed, instead print them
with the canonical type `τ_d_i` notation. Since it's printed this
way in the generic parameter list as well, it parses back in.
Fixes rdar://problem/119823811.
Some notes:
This is not emitted by SILGen. This is just intended to be used so I can write
SIL test cases for transfer non sendable. I did this by adding an
ActorIsolationCrossing field to all FullApplySites rather than adding it into
the type system on a callee. The reason that this makes sense from a modeling
perspective is that an actor isolation crossing is a caller concept since it is
describing a difference in between the caller's and callee's isolation. As a
bonus it makes this a less viral change.
For simplicity, I made it so that the isolation is represented as an optional
modifier on the instructions:
apply [callee_isolation=XXXX] [caller_isolation=XXXX]
where XXXX is a printed representation of the actor isolation.
When neither callee or caller isolation is specified then the
ApplyIsolationCrossing is std::nullopt. If only one is specified, we make the
other one ActorIsolation::Unspecified.
This required me to move ActorIsolationCrossing from AST/Expr.h ->
AST/ActorIsolation.h to work around compilation issues... Arguably that is where
it should exist anyways so it made sense.
rdar://118521597
* `alloc_vector`: allocates an uninitialized vector of elements on the stack or in a statically initialized global
* `vector`: creates an initialized vector in a statically initialized global
We already need to track the inverses separate from the members in a
ProtocolCompositionType, since inverses aren't real types. Thus, the
only purpose being served by InverseType is to be eliminated by
RequirementLowering when it appears in a conformance requirement.
Instead, we introduce separate type InverseRequirement just to keep
track of which inverses we encounter to facilitate cancelling-out
defaults and ensuring that the inverses are respected after running
the RequirementMachine.