KeyPath's getter/setter/hash/equals functions have their own calling
convention, which receives generic arguments and embedded indices from a
given KeyPath argument buffer.
The convention was previously implemented by:
1. Accepting an argument buffer as an UnsafeRawPointer and casting it to
indices tuple pointer in SIL.
2. Bind generic arguments info from the given argument buffer while emitting
prologue in IRGen by creating a new forwarding thunk.
This 2-phase lowering approach was not ideal, as it blocked KeyPath
projection optimization [^1], and also required having a target arch
specific signature lowering logic in SIL-level [^2].
This patch centralizes the KeyPath accessor calling convention logic to
IRGen, by introducing `@convention(keypath_accessor_XXX)` convention in
SIL and lowering it in IRGen. This change unblocks the KeyPath projection
optimization while capturing subscript indices, and also makes it easier
to support WebAssembly target.
[^1]: https://github.com/apple/swift/pull/28799
[^2]: https://forums.swift.org/t/wasm-support/16087/21
This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.
- VTableSpecializer, a new pass that synthesizes a new vtable per each observed concrete type used
- Don't use full type metadata refs in embedded Swift
- Lazily emit specialized class metadata (LazySpecializedClassMetadata) in IRGen
- Don't emit regular class metadata for a class decl if it's generic (only emit the specialized metadata)
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
The new instruction is needed for opaque values mode to allow values to
be extracted from tuples containing packs which will appear for example
as function arguments.
Unavailable enum elements cannot be instantiated at runtime without invoking
UB. Therefore the optimizer can consider a basic block unreachable if its only
predecessor is a block that terminates in a switch instruction matching an
unavailable enum element. Furthermore, removing the switch instruction cases
that refer to unavailable enum elements is _mandatory_ when
`-unavailable-decl-optimization=complete` is specified because otherwise
lowered IR for these instructions could refer to enum tag accessors that will
not be lowered, resulting in a failure during linking.
Resolves rdar://113872720.
This reverts commit 20f99b2822.
The assert triggers in in the i386 build in the function:
// specialized Substring.UnicodeScalarView.replaceSubrange<A>(_:with:)
The ref_to_* and *_to_ref instructions must not produce or take as their
operands values of address-only type. The AddressLowering pass would
trap on encountering such illegal instructions already. Enforce the
invariant in the verifier.
The new instruction wraps a value in a `@sil_weak` box and produces an
owned value. It is only legal in opaque values mode and is transformed
by `AddressLowering` to `store_weak`.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.
This prevents another type of copy of noncopyable value error.
I also as a small change, changed the tuple version to use a formal access
temporary since we are projecting a component out implying that the lifetime of
the temporary must end within the formal access. Otherwise, we cause the
lifetime of the temporary to outlive the access. This can be seen in the change
to read_accessor.swift where we used to extend the lifetime of the destroy_addr
outside of the coroutine access we are performing.
Implement "init accessor" component emission which is paired with
"init accessor" write strategy. Use `SILUndef` for a "setter" operand
of an "assign_or_init" instruction in cases when property with init
accessor doesn't have a setter. DI would detect re-initialization
attempts to produce diagnostics.
APIs on ForwardingInstruction should be written as static taking in
a SILInstruction as a parameter making it awkward.
Introduce a ForwardingOperation wrapper type and move the apis from the
old "mixin" class to the wrapper type.
Add new api getForwardedOperands()
SelectEnumInstBase will be templated in the next commit.
Instead of using templated SelectEnumInstBase everywhere, introduce
a new wrapper type SelectEnumOperation.
Instead of dealing with substitutions during raw SIL lowering,
let's produce a partial apply without argument to produce a
substituted reference that could be used by SILVerifier and
raw SIL lowering stages.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
This instruction is similar to AssignByWrapperInst, but instead of having
a destination operand, the initialization is fully factored into the init
function operand. Like AssignByWrapper, AssignOrInit has partial application
operands of both the initializer and the setter, and DI will lower the
instruction to a call based on whether the assignment is initialization or
a setter call.