when computing the list. This simplifies getLocalCaptures to *just* filter out
global captures, and paves the way for other enhancements. NFC.
Swift SVN r25739
If we have a C function pointer conversion, generate a thunk using the same logic we use for ObjC method thunks, and emit a pointer to that thunk as the C function pointer value. (This works for nongeneric, nonmember functions; generics will additionally need to apply generic parameters within the thunks. Static functions would need to gather the metatype as well.)
Swift SVN r25653
Since we weren't assigning region counters until we were emitting
function bodies, we would crash while walking the expressions in
default arguments. This assigns the counters earlier and fixes up the
ASTWalker to expect that.
Swift SVN r25445
This adds the -profile-coverage-mapping option to swift, and teaches
SILGenProfiling to generate mappings from source ranges to counters.
Swift SVN r25266
This adds the -profile-generate flag, which enables LLVM's
instrumentation based profiling. It implements the instrumentation
for basic control flow, such as if statements, loops, and closures.
Swift SVN r25155
This will have an effect on inlining into thunks.
Currently this flag is set for witness thunks and thunks from function signature optimization.
No change in code generation, yet.
Swift SVN r24998
Rather than keeping just a "main class" in every module, track the "main file"
that's responsible for producing the module's entry point. This covers both
main source files and files containing classes marked @UIApplicationMain or
@NSApplicationMain.
This should have no functionality change, but is preparation for the next
commit, where we will preserve some of this information in serialization.
Swift SVN r24529
The underlying problem is that e.g. even if a method is private but its class is public, the method can be referenced from another module - from the vtable of a derived class.
So far we handled this by setting the SILLinkage of such methods according to the visibility of the class. But this prevented dead method elimination.
Now I set the SILLinkage according to the visibility of the method. This enables dead method elimination, but it requires the following:
1) Still set the linkage in llvm so that it can be referenced from outside.
2) If the method is dead and eliminated, create a stub for it (which calls swift_reportMissingMethod).
Swift SVN r23889
"isConstant" distinction. This was an irritating bit of redundant state
that was making the code more complicated. Clients of VarLoc really only
care about "has address" and "has box", not whether the VarLoc came from
a let or var (and if they did, they can ask the VarDecl directly). NFC,
just more "yak shaving" as Doug likes to say.
Swift SVN r23869
Add the following functionality to the Swift compiler:
* covariant subtyping of Set
* upcasting, downcasting of Set
* automatic bridging between Set and NSSet, including
* NSSet params/return values in ObjC are imported as Set<NSObject>
* Set params/return values in Swift are visible to ObjC as NSSet
<rdar://problem/18853078> Implement Set<T> up and downcasting
Swift SVN r23751
haven't been type-checked.
Deserialization and so on can cause the creation of
synthetic external definitions after the type-checker
has finished processing. I hope we don't need them?
This really doesn't seem like the right fix, but the
alternative is a non-deterministic crash when emitting
a function body with no types. I haven't figured out
why it's non-deterministic.
Speculatively committing this while awaiting local
test suite verification.
Swift SVN r23734
This should have been done a long time ago since SILOptions are options that
should be able to effect everything SIL related. In this case I just want to
pass in a flag on the SILModule to enable +0 self. By putting it on the
SILModule I can conveniently check it in SILFunctionType without exposing any
internal state from SILFunctionType.cpp.
Swift SVN r23647
This API didn't take accessibility into account in a useful way, and
usually did a more general search than what was actually needed. We've
gradually been replacing uses of it with either more safe or more direct
APIs, including a regular UnqualifiedLookup, DeclContext::lookupQualified,
or Module::lookupValue. Now it's gone.
No functionality change.
Swift SVN r23449
Refactor part of emitGlobalAccessor to emitOnceCall so it can be used
by both emitGlobalGetter and emitGlobalAccessor.
This is the second patch to use global getter for "let" globals.
rdar://16614767
Swift SVN r23107
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22812
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22795
with user code and that the boilerplate is counted towards the prologue.
<rdar://problem/18563763> Setting a breakpoint on "main" in a Swift program doesn't stop at user code
Swift SVN r22611
Eliminate the intermediate top_level_code function. Now that SIL is expressive enough to express a "main" function, there's no reason for it, and this eliminates a bunch of mystery code in IRGen to thunk from main to top_level_code by reaching for hardcoded symbol names. Demystify the special code for setting up C_ARGC and C_ARGV by having SILGen look for a transparent "_didEnterMain" hook in the stdlib and emit a call to it.
Swift SVN r22525
We can't expose the lazy initialization token across module boundaries because that might lead to it being duplicated, which would be bad, so if we were ever going to make them fragile, it would have to happen after a guaranteed globalopt pass. Fixes a crash that was blocking DaveA's work; his incoming patches should exercise this.
Swift SVN r22509
This is controlled by a new isWholeModule() attribute in SILModule.
It gives about 9% code size reduction on the benchmark executables.
For test-suite reasons it is currently not done for the stdlib.
Swift SVN r22491
In preparation for the switch to llvm::Optional, which doesn't have this.
I suggested it, but got some pushback from David Blaikie, which is
understandable because implicit conversions are dangerous.
std::experimental::optional also doesn't have this, and we don't use it
too much. The only cost is being slightly more explicit when relying on
conversions to give us a T to then wrap in an Optional.
Swift SVN r22472
In preparation for the switch to llvm::Optional, which doesn't have a 'cache'
method. Given how long we spent bikeshedding over the name and how few places
we ended up using it, I didn't feel like trying to push it through on the
LLVM side.
Swift SVN r22471
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
Update SILGen to create SILGlobalVariable and SILGlobalAddrInst instead of
GlobalAddrInst. When we see a definition for a global variable, we create
the corrsponding SILGlobalVariable definition.
When creating SILGlobalVariable from a global VarDecl, we mangle the global
VarDecl in the same way as we mangle it at IRGen. The SILLinkage is also
set in the same way as we set it at IRGen.
At IRGen, we use the associated VarDecl for SILGlobalVariable if it exists,
to have better debugging information.
We set the initializer for SILGlobalVariable definition only.
We also handle SILGlobalAddrInst in various SILPasses, in the similar way
as we handle GlobalAddrInst.
rdar://15493694
Swift SVN r21887
This will let the performance inliner inline a function even if the costs are too high.
This attribute is only a hint to the inliner.
If the inliner has other good reasons not to inline a function,
it will ignore this attribute. For example if it is a recursive function (which is
currently not supported by the inliner).
Note that setting the inline threshold to 0 does disable performance inlining at all and in
this case also the @inline(__always) has no effect.
Swift SVN r21452
This disables inlining at the SIL level. LLVM inlining is still enabled. We can
use this to expose one function at the SIL level - which can participate in
dominance based optimizations but which is implemented in terms of a cheap check
and an expensive check (function call) that benefits from LLVM's inlining.
Example:
The inline(late) in the example below prevents inlining of the two checks. We
can now perform dominance based optimizations on isClassOrObjExistential.
Without blocking inlining the optimizations would apply to the sizeof check
only and we would have multiple expensive function calls.
@inline(late)
func isClassOrObjExistential(t: Type) -> Bool{
return sizeof(t) == sizeof(AnyObject) &&
swift_isClassOrObjExistential(t)
}
We do want inlining of this function to happen at the LLVM level because the
first check is constant folded away - IRGen replaces sizeof by constants.
rdar://17961249
Swift SVN r21286
Enable SIL parsing and SIL serialization of semantics.
We add one more field to SILFunctionLayout for semantics. We should refactor
handling of attributes at SIL level, right now they are in SILFunction as bool
or std::string and in SIL serializer as a 1-bit field or an ID field.
rdar://17525564
Swift SVN r19434
These types are needed by enough of the stack now that it makes sense to centralize their lookup and caching onto the AST context like other core types.
Swift SVN r19029
Mandatory-inlined (aka transparent functions) are still treated as if they
had the location and scope of the call site. <rdar://problem/14845844>
Support inline scopes once we have an optimizing SIL-based inliner
Patch by Adrian Prantl.
Swift SVN r18835