Rather than lookup up the macro by name again during constraint
application, use the overload choice for the macro as recorded in the
constraint system to apply the correct macro.
Although the declaration of macros doesn't appear in Swift source code
that uses macros, they still operate as declarations within the
language. Rework `Macro` as `MacroDecl`, a generic value declaration,
which appropriate models its place in the language.
The vast majority of this change is in extending all of the various
switches on declaration kinds to account for macros.
For synthesized `<async iterator>.next()` calls expression rewriter
has to check whether witness is throwing and add `try` when necessary,
in order to do that injector needs to look through opened existentials,
erasures, and other implicitly injected AST nodes.
Allow user-defined macros to be loaded from dynamic libraries and evaluated.
- Introduce a _CompilerPluginSupport module installed into the toolchain. Its `_CompilerPlugin` protocol acts as a stable interface between the compiler and user-defined macros.
- Introduce a `-load-plugin-library <path>` attribute which allows users to specify dynamic libraries to be loaded into the compiler.
A macro library must declare a public top-level computed property `public var allMacros: [Any.Type]` and be compiled to a dynamic library. The compiler will call the getter of this property to obtain and register all macros.
Known issues:
- We current do not have a way to strip out unnecessary symbols from the plugin dylib, i.e. produce a plugin library that does not contain SwiftSyntax symbols that will collide with the compiler itself.
- `MacroExpansionExpr`'s type is hard-coded as `(Int, String)`. It should instead be specified by the macro via protocol requirements such as `signature` and `genericSignature`. We need more protocol requirements in `_CompilerPlugin` to handle this.
- `dlopen` is not secure and is only for prototyping use here.
Friend PR: apple/swift-syntax#1022
Once we have expanded an expression macro, parse and type-check the
result given a priori knowledge of the expanded type. Then, create an
implicit macro-expansion expression to capture the result of the
rewrite.
During prechecking, postfix '...' expressions are rewritten to pack
expansion expressions if the operand contains pack references. References
to packs are replaced with opaque values, and the pack expansion stores
the opaque value bindings to decl refs.
Introduce an experimental option `BuiltinMacros` that takes the magic
literals (`#file`, `#line`, `#function`, etc.) after type checking and
processes the original source for the expression using the build
syntactic macro system in the swift-syntax library. At present, the
result of expansion is printed to standard output, but it's enough to
verify that we're able to find the corresponding syntax node based on
the C++ AST.
Introduce `MacroExpansionExpr` and `MacroExpansionDecl` and plumb it through. Parse them in roughly the same way we parse `ObjectLiteralExpr`.
The syntax is gated under `-enable-experimental-feature Macros`.
Immutable properties cannot be re-assigned and don't have setters
which means that we cannot use `assign_by_wrapper` instruction to
handle `let` properties, but we can use a direct reference to
`_storage` property instead when immutable property appears as an
assignment destination and let read references go through a getter
still.
There was a special case here to type-check `T.init` as a single closure
`{ args.. in T.init(args..) }`, but really, we can do that for any static
member applied to a static metatype base, including operators.
Also fix SILGen's function conversion peephole so it looks through
`as (T...) -> U` coercions that don't involve bridging.
Remove the preallocated closure discriminator from KeyPathExpr and go back
to expanding them using an AutoClosureExpr inside of a CaptureListExpr now
that that's supported. This allows the discriminator to be assigned during
type checking without disturbing the indexing of explicit closure literals.