Looks like simply putting the availability attribute on the extension
does not suffice. Putting the availability attr on the function itself
to appease the api-digester.
This patch adds an SPI to run the first partial function of a MainActor
asynchronous function on the MainActor synchronously. This is
effectively like the asynchronous program entrypoint behavior. The first
partial function is run synchronously. Following continuations are
enqueued for execution like any other asynchronous function.
The new intrinsic, exposed via static functions on Task<T, Never> and
Task<T, Error> (rethrowing), begins an asynchronous context within a
synchronous caller's context. This is only available for use under the
task-to-thread concurrency model, and even then only under SPI.
I'm making two cleanups here. First, the closure going into
`_runAsyncMain` needs to be `@Sendable` or passing it to the task is not
safe. This will also result in a warning being emitted.
Second, I'm making this @usableFromInline and `internal`. This function
is around for legacy reasons, but it's part of the ABI, so we can't pull
it out entirely, but we don't want folks using it.
* [WIP] Initial draft at v2 Clock/Instant/Duration
* Ensure the literal types for _DoubleWide are able to be at least 64 bits on 32 bit platforms
* static cast timespec members to long
* Remove runtime exports from clock functions
* Export clock functions in implementations as they are in headers
* Clean up internal properties by adding leading underscores, refine availability to a TBD marker macro, and break at 80 lines to match style
* Shift operators to concrete Instant types to avoid complexity in solver resolution
* Adjust diagnostic note and error expectation of ambiguities to reflect new potential solver (perhaps incorrect) solutions
* Update stdlib/public/Concurrency/TaskSleep.swift
Co-authored-by: Karoy Lorentey <klorentey@apple.com>
* [stdlib][NFC] Remove trailing whitespace
* [stdlib] Remove _DoubleWidth from stdlib's ABI
* [stdlib] Strip downd _DoubleWidth to _[U]Int128
* Additional adjustments to diagnostic notes and errors expectation of ambiguities to reflect new potential solver (perhaps incorrect) solutions
* Disable type checker performance validation for operator overload inferences (rdar://33958047)
* Decorate Duration, DurationProtocol, Instant and clocks with @available(SwiftStdlib 9999, *)
* Restore diagnostic ambiguity test assertion (due to availability)
* Add a rough attempt at implementing time accessors on win32
* Remove unused clock id, rename SPI for swift clock ids and correct a few more missing availabilities
* remove obsolete case of realtime clock for dispatch after callout
* Use the default implementation of ~ for Int128 and UInt128
* Ensure diagnostic ambiguitiy applies evenly to all platforms and their resolved types
* Restore the simd vector build modifications (merge damage)
* Update to latest naming results for Instant.Duration
* Updates to latest proposal initializers and accessors and adjust encoding/decoding to string based serialization
* Update availability for Clock/Instant/Duration methods and types to be 5.7
* Correct *Clock.now to report via the correct runtime API
* Ensure the hashing of Duration is based upon the attoseconds hashing
* Avoid string based encoding and resort back to high and low bit encoding/decoding but as unkeyed
* Adjust naming of component initializer to use suffixes on parameters
* Duration decoding should use a mutable container for decoding
* fix up components initializer and decode access
* Add platform base initializers for timespec and tiemval to and from Duration
* Add some first draft documentation for standard library types Duration, DurationProtocol and InstantProtocol
* Another round of documentation prose and some drive-by availability fixes
* InstantProtocol availability should be 5.7
* Correct linux timeval creation to be Int and not Int32
Co-authored-by: Karoy Lorentey <klorentey@apple.com>
I'm making two cleanups here. First, the closure going into
`_runAsyncMain` needs to be `@Sendable` or passing it to the task is not
safe. This will also result in a warning being emitted.
Second, I'm making this @usableFromInline and `internal`. This function
is around for legacy reasons, but it's part of the ABI, so we can't pull
it out entirely, but we don't want folks using it.
getMainExecutor and asyncMainDrainQueue function declarations are needed
to compile programs with the asyn-main function. The functions are
declared internal, so they don't show up in the swift interface files.
The concurrency runtime now deploys back to macOS 10.15, iOS 13.0, watchOS 6.0, tvOS 13.0, which corresponds to the 5.1 release of the stdlib.
Adjust macro usages accordingly.
This patch updates the asynchronous main function to run the first thunk
of the function synchronously through a call to `swift_job_run`.
The runloop is killed by exiting or aborting the task that it is running
on. As such, we need to ensure that the task contains an async function
that either calls exit explicitly or aborts. The AsyncEntryPoint, that
contains this code, was added in the previous patch. This patch adds the
pieces for the actual implementation of this behaviour as well as adding
the necessary code to start the runloop.
There are now four layers of main functions before hitting the "real"
code.
@main: This is the actual main entrypoint of the program. This
constructs the task containing @async_main, grabs the main executor,
runs swift_job_run to run the first part synchronously, and finally
kicks off the runloop with a call to _asyncMainDrainQueue. This is
generated in the call to `emitAsyncMainThreadStart`.
@async_main: This thunk exists to ensure that the main function calls
`exit` at some point so that the runloop stops. It also handles emitting
an error if the user-written main function throws.
e.g:
```
func async_main() async -> () {
do {
try await Main.$main()
exit(0)
} catch {
_errorInMain(error)
}
}
```
Main.$main(): This still has the same behaviour as with the
synchronous case. It just calls `try await Main.main()` and exists to
simplify typechecking.
Main.main(): This is the actual user-specified main. It serves the same
purpose as in the synchronous, allowing the programmer to write code,
but it's async!
The control flow in `emitFunctionDefinition` is a little confusing (to
me anyway), so here it is spelled out:
If the main function is synchronous, the `constant.kind` will be a
`SILDeclRef::Kind::EntryPoint`, but the `decl` won't be async, so it
drops down to `emitArtificalTopLevel` anyway.
If the main function is async and we're generating `@main`, the
`constant.kind` will be `SILDeclRef::Kind::AsyncEntryPoint`, so we also
call `emitArtificalTopLevel`. `emitArtificalTopLevel` is responsible for
detecting whether the decl is async and deciding whether to emit code to
extract the argc/argv variables that get passed into the actual main
entrypoint to the program. If we're generating the `@async_main` body,
the kind will be `SILDeclRef::Kind::EntryPoint` and the `decl` will be
async, so we grab the mainEntryPoint decl and call
`emitAsyncMainThreadStart` to generate the wrapping code.
Note; there is a curious change in `SILLocation::getSourceLoc()`
where instead of simply checking `isFilenameAndLocation()`, I change it
to `getStorageKind() == FilenameAndLocationKind`. This is because the
SILLocation returned is to a FilenameAndLocationKind, but the actual
storage returns true for the call to `isNull()` inside of the
`isFilenameAndLocation()` call. This results in us incorrectly falling
through to the `getASTNode()` call below that, which asserts when asked
to get the AST node of a location.
I also did a little bit of refactoring in the SILGenModule for grabbing
intrinsics. Previously, there was only a `getConcurrencyIntrinsic`
function, which would only load FuncDecls out of the concurrency
module. The `exit` function is in the concurrency shims module, so I
refactored the load code to take a ModuleDecl to search from.
The emitBuiltinCreateAsyncTask function symbol is exposed from
SILGenBuiltin so that it is available from SILGenFunction. There is a
fair bit of work involved going from what is available at the SGF to
what is needed for actually calling the CreateAsyncTask builtin, so in
order to avoid additional maintenance, it's good to re-use that.
Swift 5.5 does not implement support for structural types that are
Sendable, which breaks type checking of the newer _Concurrency module.
Work around the issue with an `#if` in the offending inline code.
Fixes rdar://82602353.
This builtin never occurs in @inlinable code. But apparently we still
need to add a language feature for every builtin. This must allow
older compilers to reparse the library source (though I don't know why
that would ever happen!)
Fixes rdar://80525569 error: module 'Builtin' has no member named 'hopToActor')
The `swift_task_create` entry point is our general runtime ABI for
launching tasks. Make the various Swift APIs sitting on top of it
always-emit-into-client to take them out of the ABI. This reduces the
number of ABI entry points and allows us to make more ABI-compatible
changes to the Swift side.