When a module has been imported `@preconcurrency` in source, when it is printed
in a `swiftinterface` file it should be printed along with the attribute to
ensure that type checking of the module's public declarations behaves
consistently.
This fix is a little unsatisfying because it adds another a linear scan over
all imports in the source for each printed import. This should be improved, but
it can be done later.
Resolves rdar://136857313.
This is very brittle in this first iteration. For now we require the
declaration representing the availability domain be deserialized before it can
be looked up by name since Clang does not have a lookup table for availabilty
domains in its module representation. As a result, it only works for bridging
headers that are not precompiled.
Part of rdar://138441266.
We introduce a new macro called #SwiftSettings that can be used in conjunction
with a new stdlib type called SwiftSetting to control the default isolation at
the file level. It overrides the current default isolation whether it is the
current nonisolated state or main actor (when -enable-experimental-feature
UnspecifiedMeansMainActorIsolated is set).
Rather than exposing an `addFile` member on
ModuleDecl, have the `create` members take a
lambda that populates the files for the module.
Once module construction has finished, the files
are immutable.
It might be unexpected to future users that `-swift-compiler-version`
would produce a version aligned to .swiftinterface instead of one used
to build the .swiftmodule file. To avoid this possible confusion, let's
scope down the version to `-interface-compiler-version` flag and
`SWIFT_INTERFACE_COMPILER_VERSION` option in the module.
Add function to handle all macro dependencies kinds in the scanner,
including taking care of the macro definitions in the module interface
for its client to use. The change involves:
* Encode the macro definition inside the binary module
* Resolve macro modules in the dependencies scanners, including those
declared inside the dependency modules.
* Propagate the macro defined from the direct dependencies to track
all the potentially available modules inside a module compilation.
In anticipation of adding a new kind of missing import record to `SourceFile`,
clarify the purpose of the existing "missing imports" record with more specific
naming and documentation.
llvm::SmallSetVector changed semantics
(https://reviews.llvm.org/D152497) resulting in build failures in Swift.
The old semantics allowed usage of types that did not have an
`operator==` because `SmallDenseSet` uses `DenseSetInfo<T>::isEqual` to
determine equality. The new implementation switched to using
`std::find`, which internally uses `operator==`. This type is used
pretty frequently with `swift::Type`, which intentionally deletes
`operator==` as it is not the canonical type and therefore cannot be
compared in normal circumstances.
This patch adds a new type-alias to the Swift namespace that provides
the old semantic behavior for `SmallSetVector`. I've also gone through
and replaced usages of `llvm::SmallSetVector` with the
`Swift::SmallSetVector` in places where we're storing a type that
doesn't implement or explicitly deletes `operator==`. The changes to
`llvm::SmallSetVector` should improve compile-time performance, so I
left the `llvm::SmallSetVector` where possible.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
If we have both loaded a swiftdoc, and the decl we
have should have had its doc comment serialized into
it, we can check it without needing to fall back
to the swiftsourceinfo.
This requires a couple of refactorings:
- Factoring out the `shouldIncludeDecl` logic
into `getDocCommentSerializationTargetFor` for
determining whether a doc comment should end up
in the swiftdoc or not.
- Factoring out `CommentProviderFinder` for searching
for the doc providing comment decl for brief
comments, in order to allow us to avoid querying
the raw comment when searching for it. This has the
added bonus of meaning we no longer need to fall
back to parsing the raw comment for the brief
comment if the comment is provided by another decl
in the swiftdoc.
This diff is best viewed without whitespace.
The macro name resolution in the source lookup cache was only looking at
macros in the current module, meaning that any names introduced by peer
or declaration macros declared in one module but used in another would
not be found by name lookup.
Switch the source lookup cache over to using the same
`forEachPotentialResolvedMacro` API that is used by lookup within
types, so we have consistent name-lookup-level macro resolution in both
places.
... except that would be horribly cyclic, of course, so introduce name
lookup flags to ignore top-level declarations introduced by macro
expansions. This is semantically correct because macro expansions are
not allowed to introduce new macros anyway, because that would have
been a terrible idea.
Fixes rdar://107321469. Peer and declaration macros at module scope
should work a whole lot better now.
Add a private discriminator to the mangling of an outermost-private `MacroExpansionDecl` so that declaration macros in different files won't have colliding macro expansion buffer names.
rdar://107462515
A @testable import allows a client to call internal decls which may
refer to non-public dependencies. To support such a use case, load
non-public transitive dependencies of a module when it's imported
@testable from the main module.
This replaces the previous behavior where we loaded those dependencies
for any modules built for testing. This was risky as we would load more
module for any debug build, opening the door to a different behavior
between debug and release builds. In contrast, applying this logic to
@testable clients will only change the behavior of test targets.
rdar://107329303
Allow freestanding macros to be used at top-level.
- Parse top-level `#…` as `MacroExpansionDecl` when we are not in scripting mode.
- Add macro expansion decls to the source lookup cache with name-driven lazy expansion. Not supporting arbitrary name yet.
- Experimental support for script mode and brace-level declaration macro expansions: When type-checking a `MacroExpansionExpr`, assign it a substitute `MacroExpansionDecl` if the macro reference resolves to a declaration macro. This doesn’t work quite fully yet and will be enabled in a future fix.
If a module was first read using the adjacent swiftmodule and then
reloaded using the swiftinterface, we would do an up to date check on
the adjacent module but write out the unit using the swiftinterface.
This would cause the same modules to be indexed repeatedly for the first
invocation using a new SDK. On the next run we would instead raad the
swiftmodule from the cache and thus the out of date check would match
up.
The impact of this varies depending on the size of the module graph in
the initial compilation and the number of jobs started at the same time.
Each SDK dependency is re-indexed *and* reloaded, which is a drain on
both CPU and memory. Thus, if many jobs are initially started and
they're all going down this path, it can cause the system to run out of
memory very quickly.
Resolves rdar://103119964.
Introduce a new flag `-export-as` to specify a name used to identify the
target module in swiftinterfaces. This provides an analoguous feature
for Swift module as Clang's `export_as` feature.
In practice it should be used when a lower level module `MyKitCore` is
desired to be shown publicly as a downstream module `MyKit`. This should
be used in conjunction with `@_exported import MyKitCore` from `MyKit`
that allows clients to refer to all services as being part of `MyKit`,
while the new `-export-as MyKit` from `MyKitCore` will ensure that the
clients swiftinterfaces also use the `MyKit` name for all services.
In the current implementation, the export-as name is used in the
module's clients and not in the declarer's swiftinterface (e.g.
`MyKitCore`'s swiftinterface still uses the `MyKitCore` module name).
This way the module swiftinterface can be verified. In the future, we
may want a similar behavior for other modules in between `MyKitCore` and
`MyKit` as verifying a swiftinterface referencing `MyKit` without it
being imported would fail.
rdar://103888618
The effect of declaring an import `@_weakLinked` is to treat every declaration from the module as if it were declared with `@_weakLinked`. This is useful in environments where entire modules may not be present at runtime. Although it is already possible to instruct the linker to weakly link an entire dylib, a Swift attribute provides a way to declare intent in source code and also opens the door to diagnostics and other compiler behaviors that depend on knowing that all the module's symbols will be weakly linked.
rdar://96098097
See #59144 for more on why this is a bad idea.
Patch out the synthesized file unit accessor to only clear the source cache, then patch up all the places that were assuming they could iterate over the module's file list and see synthesized files.
rdar://94164512
Synthesized file units were designed for autodiff to emit synthesized declarations, and also to sidestep the design implications of doing so late in the compiler pipeline.
A call to materialize synthesized file units was added to the GetImplicitSendable request. This introduced a source of iterator invalidation into forEachFileToTypeCheck in whole-module builds. Any call to insert a new file into the module has the potential to cause the underlying SmallVector to reallocate.
This patch provides a narrow workaround that stops using iterators altogether in forEachFileToTypeCheck. However, this bug reveals a severe architectural flaw in the concept of a synthesized file unit. Iterating over the files in a module is an extremely common operation, and there now are myriad ways we could wind up calling a function that mutates the module's list of files in the process. This also means the number and kind of files being visited by compiler analyses is dependent upon whether a request that inserts these files has or has not been called.
This suggests the call to ModuleDecl::addFile in FileUnit::getOrCreateSynthesizedFile is deleterious and should be removed. Doing so will come as part of a larger refactoring.
rdar://94043340
We noticed some Swift clients rely on the serialized search paths in the module to
find dependencies and droping these paths altogether can lead to build failures like
rdar://85840921.
This change teaches the serialization to obfuscate the search paths and the deserialization
to recover them. This allows clients to keep accessing these paths without exposing
them when shipping the module to other users.
Many, many, many types in the Swift compiler are intended to only be allocated in the ASTContext. We have previously implemented this by writing several `operator new` and `operator delete` implementations into these types. Factor those out into a new base class instead.
The locations stored in .swiftsourceinfo included the presumed file,
line, and column. When a location is requested it would read these, open
the external file, create a line map, and find the offset corresponding
to that line/column.
The offset is known during serialization though, so output it as well to
avoid having to read the file and generate the line map.
Since the serialized location is returned from `Decl::getLoc()`, it
should not be the presumed location. Instead, also output the line
directives so that the presumed location can be built as per normal
locations.
Finally, move the cache out of `Decl` and into `ASTContext`, since very
few declarations will actually have their locations deserialized. Make
sure to actually write to that cache so it's used - the old cache was
never written to.