Now that everything is done in terms of FileUnits, we don't need LoadedModule
anymore, and now that FileUnits just use virtual dispatch, we don't need to
indirect through ModuleLoader to distinguish them.
This doesn't quite simplify as much as it could, because the next change is
going to combine TranslationUnit and Module.
Swift SVN r10836
Part of the FileUnit restructuring. A Clang module (whether from a framework
or a simple collection of headers) is now imported as a TranslationUnit
containing a single ClangModuleUnit.
One wrinkle in all this is that Swift very much wants to do searches on a
per-module basis, but Clang can only do lookups across the entire
TranslationUnit. Unless and until we get a better way to deal with this,
we're stuck with an inefficiency here. Previously, we used to hack around
this by ignoring the "per-module" bit and only performing one lookup into
all Clang modules, but that's not actually correct with respect to visibility.
Now, we're just taking the filtering hit for looking up a particular name,
and caching the results when we look up everything (for code completion).
This isn't ideal, but it doesn't seem to be costing too much in performance,
at least not right now, and it means we can get visibility correct.
In the future, it might make sense to include a ClangModuleUnit alongside a
SerializedASTFile for adapter modules, rather than having two separate
modules with the same name. I haven't really thought through this yet, though.
Swift SVN r10834
Part of the FileUnit restructuring. A serialized module is now represented as
a TranslationUnit containing a single SerializedASTFile.
As part of this change, the FileUnit interface has been made virtual, rather
than switching on the Kind in every accessor. We think the operations
performed on files are sufficiently high-level that this shouldn't affect us.
A nice side effect of all this is that we now properly model the visibility
of modules imported into source files. Previously, we would always consider
the top-level imports of all files within a target, whether re-exported or
not.
We may still end up wanting to distinguish properties of a complete Swift
module file from a partial AST file, but we can do that within
SerializedModuleLoader.
Swift SVN r10832
Qualified lookup depends not only on the current module but actually the
current file, since imports are file-scoped by default. Currently this only
affects lookup into other modules (e.g. "Foundation.NSString"), but this
could also be used for extension filtering.
This breaks one name resolution test, but the refactoring in the next
commit changes everything anyway and will restore the test.
Swift SVN r10831
The goal of this series of commits is to allow the main module to consist
of both source files and AST files, where the AST files represent files
that were already built and don't need to be rebuilt, or of Swift source
files and imported Clang headers that share a module (because they are in
the same target).
Currently modules are divided into different kinds, and that defines how
decls are looked up, how imports are managed, etc. In order to achieve the
goal above, that polymorphism should be pushed down to the individual units
within a module, so that instead of TranslationUnit, BuiltinModule,
SerializedModule, and ClangModule, we have SourceFile, BuiltinUnit,
SerializedFile, and ClangUnit. (Better names welcome.) At that point we can
hopefully collapse TranslationUnit into Module and make Module non-polymorphic.
This commit makes SourceFile the subclass of an abstract FileUnit, and
makes TranslationUnit hold an array of FileUnits instead of SourceFiles.
To demonstrate that this is actually working, the Builtin module has also
been converted to FileUnit: it is now a TranslationUnit containing a single
BuiltinUnit.
Swift SVN r10830
Previously we would cache the results of operator lookup whether or not the
operator we found came from an imported module. Since different source files
can have different imports, it's not correct to automatically share operators
from imported modules with all files in the translation unit.
This still isn't fully correct; the current logic prefers operators from
local imports over operators implicitly available from other source files.
Swift SVN r9683
Anywhere that assumes a single input file per TU now has to do so explicitly.
Parsing still puts all files in a single SourceFile instance; that's next on
the list.
There are a lot of issues still to go, but the design is now in place.
Swift SVN r9669
The operator lookup cache already lived in SourceFile, but we need to be
able to look up operators on a per-SourceFile basis. Different files can
have different imports. The interface previously distinguished between
"no operator found" and "error", but none of the call sites were making
use of this distinction, and indeed some were misusing the return value
(Optional<SomeOperatorDecl *>). Now the lookup functions just return
operator decl pointers, which may be null.
Swift SVN r9668
Each one has a different kind of lookup cache anyway, and there's no real
reason to have them share storage at the cost of type-safety.
Swift SVN r9242
Being able to pass -l to the driver isn't so interesting, and it's an
extra field that lives on TranslationUnit for no reason. Just remove it.
This doesn't interfere with autolinking, i.e. inferring -l flags based on
imported modules.
Swift SVN r9241
LLVM's SourceMgr uses 'int' for buffer IDs, but -1 is a special placeholder
value that means "no such buffer". Swift's SourceManager then makes a
distinction between 'unsigned' and 'int' -- an unsigned buffer ID always
refers to an actual buffer, while an int ID may be -1. Respect this in
SourceFile, which uses Optional to represent a "potential" buffer.
Swift SVN r9239
docs/Resilience.rst describes the notion of a resilience component:
if the current source file is in the same component as a module being
used, it can use fragile access for everything in the other module,
with the assumption that everything in a component will always be
recompiled together.
However, nothing is actually using this today, and the interface we
have is probably not what we'll want in 2.0, when we actually implement
resilience.
Swift SVN r9174
Right now this is just an extra layer of indirection for the decls,
operators, and imports in a TU, but it's the first step towards compiling
multiple source files at once without pretending they're all in a single
file. This is important for the "implicit visibility" feature, where
declarations from other source files in the same module are accessible
from the file currently being compiled.
Swift SVN r9072
UnqualifiedLookup to ask an external source for
names. There are two phases to this external lookup:
- Before consulting globals in other modules,
UnqualifiedLookup calls lookupOverrides() to see
if there are any results that should override the
results from modules. (N.b.: these should not be
able to override names that are locally defined.)
- After consulting globals in other modules,
UnqualifiedLookup as a last resort calls
lookupFallbacks() to see if there's anything out
there at all that could serve that name. This may
be more computationally expensive.
These hooks are used by LLDB's expression parser to
resolve names for persistent variables (akin to the
existing $0, $1, ... variables) and variables local
to the current frame.
Swift SVN r9014
Instead, pass a LazyResolver down through name lookup, and type-check
things on demand. Most of the churn here is simply passing that extra
LazyResolver parameter through.
This doesn't actually work yet; the later commits will fix this.
Swift SVN r8643
Introduce an AST operation that, given a type and a protocol, determines
whether the type conforms to the protocol and produces the protocol
conformance structure. Previously, this operation was only available
on the type checker, requiring many callbacks from the AST to the type
checker during AST substitution operations (for example).
Now, we only call back into the type checker when we hit a case where
we see an explicit conformance in the AST, but the actual
ProtocolConformance object has not yet been built due to lazy type
checking.
Note that we still require a resolver (i.e., a TypeChecker) in a few
places, although we shouldn't need it outside of lazy type
checking. I'll loosen up the restrictions next.
There's a minor diagnostics regression here that will be cleaned up in
a future commit.
Swift SVN r8129
getDisplayDecls() was introduced for ":print_module" and works slightly differently, e.g.
it will return the decls from a shadowed clang module, since we want to display them.
Swift SVN r7909
When performing member lookup into an existential that involves the
DynamicLookup protocol, look into all classes and protocols for that
member. References to anything found via this lookup mechanism are
returned as instances of Optional.
This introduces the basic lookup mechanics into the type
checker. There are still numerous issues to work through:
- Subscripting isn't supported yet
- There's no SILGen or IRGen support
- The ASTs probably aren't good enough for the above anyway
- References to generics will be broken
- Ambiguity resolution or non-resolution
Thanks to Jordan for the patch wiring up DynamicLookup.
Swift SVN r7689
This is basically the same as doing a :print_decl on every decl in the module,
except that it does not print extensions that come from other modules, and
/does/ print extensions and operators that come from this module.
Does not yet work for Clang modules or the Builtin module.
Swift SVN r7601
...and use it to load frameworks and libraries in immediate modes (-i and
the REPL), replacing a walk of visible modules that checked if any imported
modules were Clang modules.
Swift SVN r7488
...instead of just those that are re-exported. This will be used for
autolinking (and probably few other places).
As part of this, we get two name changes:
(1) Module::getReexportedModules -> getImportedModules
(2) TranslationUnit::getImportedModules -> getImports
The latter doesn't just get modules-plus-access-paths; it also includes
whether or not the import is re-exported. Mainly, though, it just didn't
seem like a good idea to overload this name when the two functions aren't
really related.
No tests yet, will come with autolinking.
Swift SVN r7487
Previously, TypeAliasDecl was used for typealiases, generic
parameters, and assocaited types, which is hideous and the source of
much confusion. Factor the latter two out into their own decl nodes,
with a common abstract base for "type parameters", and push these
nodes throughout the frontend.
No real functionality change, but this is a step toward uniquing
polymorphic types, among other things.
Swift SVN r7345
A part of my mind wanted to skip the kind check in Module's implementation
of these if we already knew we were dealing with a LoadedModule, but the
extra level of indirection is fairly annoying. Just jump straight to the
LoadedModule's owner here.
(We can't use virtual methods because we want Module to stay vtable-free.)
Swift SVN r7337
This will be used to resolve properties and method calls on objects with
dynamic-lookup ("id") type. For now, this is tested in swift-ide-test
by using the -dynamic-lookup-completion option and providing a
-code-completion-token value.
Caveats/TODOs:
- As before, since we're using the global method pool, this isn't scoped by
module. We could do a per-module filter, but I don't know if that will
actually buy us much.
- Again, Clang's method pool does not include methods from protocols.
- Lookup by selector name cannot find properties with a customized getter
name. <rdar://problem/14776565>
- The Clang-side method pool is keyed by selector, but Swift wants to look
things up by method name, which maps to the first selector piece, so we
end up having to do a scan of all the selectors in the pool.
Swift SVN r7330
...so, add a templated overload that ensures that lambdas aren't copied,
so that callers don't need to add an explicit makeStackLambda().
No functionality change.
Swift SVN r7303
With this, we can now get a list of all class members* available in the
current translation unit, which will be necessary for doing id-style
dynamic lookup (inferring which method you're referring to when the base
type is some magic "dynamic lookup" type).
* Including members of protocols, since a class we don't know about could
have implemented the protocol.
Since there is no code currently using this, I've added a new mode to
swift-ide-test to just dump all class members -- what will eventually
happen when you code complete on a dynamic lookup type. This mode will
go away once the other pieces of id-style lookup are in place.
Swift SVN r7287