The use of sizeof(void*) in TargetStructMetadata and
TargetEnumMetadata's accessors is incorrect when (e.g.) reading
metadata from a 32-bit process in a 64-bit host. Use
sizeof(StoredPointer) instead to properly account for the runtime
pointer size.
Fixes rdar://problem/47305557.
Translate the metadata for the generic requirements of an extension context
into a demangle tree that is associated with the demangling of an extension.
Teach the ASTDemangler how to handle class layout constraints as well.
With this, RemoteAST can resolve types nested within most constrained
extensions.
Read the extended context mangled name from an extension context descriptor
so we can form a proper demangle tree for extensions. For example, this allows
types nested within extensions of types from different modules to be found.
When an anonymous context descriptor provides a mangled name, use that
mangled name to provide the private declaration name for its child context.
This allows us to resolve private type names correctly when the corresponding
anonymous context has its mangled name.
Fixes rdar://problem/38231646.
When -enable-anonymous-context-mangled-names is provided, emit mangled
names as part of the metadata of an anonymous context. This will allow
us to match textual mangled names to the metadata.
This is a backward-compatible ABI extension. Part of rdar://problem/38231646/.
This is essentially a long-belated follow-up to Arnold's #12606.
The key observation here is that the enum-tag-single-payload witnesses
are strictly more powerful than the XI witnesses: you can simulate
the XI witnesses by using an extra case count that's <= the XI count.
Of course the result is less efficient than the XI witnesses, but
that's less important than overall code size, and we can work on
fast-paths for that.
The extra inhabitant count is stored in a 32-bit field (always present)
following the ValueWitnessFlags, which now occupy a fixed 32 bits.
This inflates non-XI VWTs on 32-bit targets by a word, but the net effect
on XI VWTs is to shrink them by two words, which is likely to be the
more important change. Also, being able to access the XI count directly
should be a nice win.
Use the elaborated type for the type alias that we are creating.
Because the type inherits from `TargetMetadata`, the reference here is
parsed as a reference to the underlying type in MSVC. Use the
elaborated type to resolve to the type itself. The rules for these
changed around C++11, but MSVC defaults to the old style of the name
resolution. NFC.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
IRGen always just emits a simple implementation that immediately
calls swift_relocateClassMetadata(); so allow the function to be
null in this case to save on code size.
Extend the key-path pattern with a representation of the generic environment
of the key-path, which includes the generic parameters and generic
requirements of the environment.
We should also allow references via manglings just to cover the
general case if we need it, but this is useful on its own so that
we can emit a reference to any natively-declared Swift type.
TargetGenericParamRef is a specialized structure used to describe the
subject of a generic requirement, e.g., the “T.Assoc” in “T.Assoc: P”.
Replace it with a mangled name, for several reasons:
1) Mangled type names are also fairly concise, can often be shared, and
are a well-tested path
2) Mangled type names can express any type, which might be useful in the
future
3) This structure doesn’t accommodate specifically stating where the
conformances come from (to extract associated type witnesses). Neither
can mangled names, but we’d like to do that work in only one place.
This change exposed an existing bug where we improperly calculated the
generic parameter counts for extensions of nested generic types. Fix that
bug here (which broke an execution test).
Runtime functions need to use the Swift calling convention for any function
returning MetadataResponse, so that we get the two values returned in separate
registers.
Fixes rdar://problem/45042971 and rdar://problem/45851050.
Witness table accessors return a witness table for a given type's
conformance to a protocol. They are called directly from IRGen
(when we need the witness table instance) and from runtime conformance
checking (swift_conformsToProtocol digs the access function out of the
protocol conformance record). They have two interesting functions:
1) For witness tables requiring instantiation, they call
swift_instantiateWitnessTable directly.
2) For synthesized witness tables that might not be unique, they call
swift_getForeignWitnessTable.
Extend swift_instantiateWitnessTable() to handle both runtime
uniquing (for #2) as well as handling witness tables that don't have
a "generic table", i.e., don't need any actual instantiation. Use it
as the universal entry point for "get a witness table given a specific
conformance descriptor and type", eliminating witness table accessors
entirely.
Make a few related simplifications:
* Drop the "pattern" from the generic witness table. Instead, store
the pattern in the main part of the conformance descriptor, always.
* Drop the "conformance kind" from the protocol conformance
descriptor, since it was only there to distinguish between witness
table (pattern) vs. witness table accessor.
* Internalize swift_getForeignWitnessTable(); IRGen no longer needs to
call it.
Reduces the code size of the standard library (+assertions build) by
~149k.
Addresses rdar://problem/45489388.
Collapse the generic witness table, which was used only as a uniquing
data structure during witness table instantiation, into the protocol
conformance record. This colocates all of the constant protocol conformance
metadata and makes it possible for us to recover the generic witness table
from the conformance descriptor (including looking at the pattern itself).
Rename swift_getGenericWitnessTable() to swift_instantiateWitnessTable()
to make it clearer what its purpose is, and take the conformance descriptor
directly.
Place resilient witnesses in the protocol conformance descriptor,
tail-allocated after the conditional requirements, so they can be found by
reflection. Drop the resilient witness table and protocol descriptor from
the generic witness table.
Addresses rdar://problem/45228582.
Have clients pass the requirement base descriptor to
swift_getAssociatedTypeWitness(), so that the witness index is just one
subtraction away, avoiding several dependent loads (witness table ->
conformance descriptor -> protocol descriptor -> requirement offset)
in the hot path.
The superclass descriptor reference in class context descriptors is only used
for metadata bound computations when the superclass is resilient. Only
include the superclass descriptor reference when the class has a resilient
superclass, using a trailing record. It’s a tiny space savings for
classes that don’t have resilient superclasses.
Associated type witnesses in a witness table are cache entries, which are
updated by the runtime when the associated types are first accessed. The
presence of an associated type witness that involves type parameters requires
the runtime to instantiate the witness table; account for that in the runtime.
The presence of any associated type witness makes the witness table
non-constant.
Rather than storing associated type metadata access functions in
witness tables, initially store a pointer to a mangled type name.
On first access, demangle that type name and replace the witness
table entry with the resulting type metadata.
This reduces the code size of protocol conformances, because we no
longer need to create associated type metadata access functions for
every associated type, and the mangled names are much smaller (and
sharable). The same code size improvements apply to defaulted
associated types for resilient protocols, although those are more
rare. Witness tables themselves are slightly smaller, because we
don’t need separate private entries in them to act as caches.
On the caller side, associated type metadata is always produced via
a call to swift_getAssociatedTypeWitness(), which handles the demangling
and caching behavior.
In all, this reduces the size of the standard library by ~70k. There
are additional code-size wins that are possible with follow-on work:
* We can stop emitting type metadata access functions for non-resilient
types that have constant metadata (like `Int`), because they’re only
currently used as associated type metadata access functions.
* We can stop emitting separate associated type reflection metadata,
because the reflection infrastructure can use these mangled names
directly.
Like we did for structs, make it so that tuple types can also get extra inhabitants from whichever element with the most, not only the first. This lets us move all of the extra inhabitant handling functionality between structs and tuples in IRGen up to the common RecordTypeInfo CRTP base.
Generic parameter references, which occur in generic requirement
metadata, were hardcoding associated type indices. Instead, use
relative references to associated type descriptors and perform the
index calculation at runtime.
Associated types can now be reordered resiliently (without relying on
sorting), which is the first main step toward rdar://problem/44167982.
Previously we would emit class metadata for classes with resilient
ancestry, and relocate it at runtime once the correct size was known.
However most of the fields were blank, so it makes more sense to
construct the metadata from scratch, and store the few bits that we
do need in a true-const pattern where we can use relative pointers.
Similar to the non-resilient case, except we also emit a 'relocation
function'. The class descriptor now contains this relocation function
if the class has resilient ancestry, and the relocation function
calls the runtime's swift_relocateClassMetadata() entry point.
The metadata completion function calls swift_initClassMetadata() and
does layout, just like the non-resilient case.
Fixes <rdar://problem/40810002>.
This saves us some expensive cross-referencing and caching in the runtime, and lets us reclaim the `isReflectable` bit from the context descriptor flags (since a null field descriptor is a suitable and more accurate indicator of whether a type is reflectable).
- Instead of keeping multiple flags in the type descriptor flags,
just keep a single flag indicating the presence of additional
import information after the name.
- That import information consists of a sequence of null-terminated
C strings, terminated by an empty string (i.e. by a double null
terminator), each prefixed with a character describing its purpose.
- In addition to the symbol namespace and related entity name,
include the ABI name if it differs from the user-facing name of the
type, and make the name the user-facing Swift name.
There's a remaining issue here that isn't great: we don't correctly
represent the parent relationship between error types and their codes,
and instead we just use the Clang module as the parent. But I'll
leave that for a later commit.
- `swift_getForeignTypeMetadata` is now a request/response function.
- The initialization function is now a completion function, and the
pointer to it has moved into the type descriptor.
- The cache variable is no longer part of the ABI; it's an
implementation detail of the access function.
- The two points above mean that there is no special header on foreign
type metadata and therefore that they can be marked constant when
there isn't something about them that needs to be initialized.
The only foreign-metadata initialization we actually do right now is
of the superclass field of a foreign class, and since that relationship
is a proper DAG, it's not actually possible to have recursive
initialization problems. But this is the right long-term thing to do,
and it removes one of the last two clients of once-based initialization.