We neglected to set it on one path (a scalar-to-tuple conversion path currently only taken by subscript applications). Change TupleShuffleExpr's constructor to take it as an argument so this mistake is harder to make in the future. Fixes SR-5264 | rdar://problem/32860988.
Situations where there is a contextual RawRepresentable type is
used incorrectly would produce `<Type>(rawValue: )` fix-it only
in cases where neither or both sides of the expression are optional.
Let's fix that by adding a fix-it for optional to contextual raw
value type conversion.
Resolves: rdar://problem/32431736
Now that preCheckExpression() can handle more cases, we can
eliminate a special case where sometimes we would make
DeclRefExprs instead of TypeExprs for references to generic
types.
It's particularly likely someone will try to type `\(foo)`, which looks like a string interpolation segment, outside of a string literal, so give that case a special diagnostic. Fixes rdar://problem/32315365.
This introduces a few unfortunate things because the syntax is awkward.
In particular, the period and following token in \.[a], \.? and \.! are
token sequences that don't appear anywhere else in Swift, and so need
special handling. This is somewhat compounded by \foo.bar.baz possibly
being \(foo).bar.baz or \(foo.bar).baz (parens around the type), and,
furthermore, needing to distinguish \Foo?.bar from \Foo.?bar.
rdar://problem/31724243
TODO:
- Select the KeyPath subclass corresponding to the write capability of the key path components
- Figure out an issue with unresolved solutions being chosen with contextually-typed keypaths
- Diagnostic QoI
A return statement needs something to return, so implement
integer-literal-expression too. This necessarily also forced
UnknownExprSyntax, UnknownStmtSyntax, and UnknownDeclSyntax,
which are stand-in token buckets for when we don't know
how to transform/migrate an AST.
This commit also contains the core function for caching
SyntaxData children. This is highly tricky code, with some
detailed comments in SyntaxData.{h,cpp}. The gist is that
we have to atomically swap in a SyntaxData pointer into the
child field, so we can maintain pointer identity of SyntaxData
nodes, while still being able to cache them internally.
To prove that this works, there is a multithreaded test that
checks that two threads can ask for a child that hasn't been
cached yet without crashing or violating pointer identity.
https://bugs.swift.org/browse/SR-4010
Add an option to the lexer to go back and get a list of "full"
tokens, which include their leading and trailing trivia, which
we can index into from SourceLocs in the current AST.
This starts the Syntax sublibrary, which will support structured
editing APIs. Some skeleton support and basic implementations are
in place for types and generics in the grammar. Yes, it's slightly
redundant with what we have right now. lib/AST conflates syntax
and semantics in the same place(s); this is a first step in changing
that to separate the two concepts for clarity and also to get closer
to incremental parsing and type-checking. The goal is to eventually
extract all of the syntactic information from lib/AST and change that
to be more of a semantic/symbolic model.
Stub out a Semantics manager. This ought to eventually be used as a hub
for encapsulating lazily computed semantic information for syntax nodes.
For the time being, it can serve as a temporary place for mapping from
Syntax nodes to semantically full lib/AST nodes.
This is still in a molten state - don't get too close, wear appropriate
proximity suits, etc.
Another pile of changes to use a side map for types in the constraint
solver and only write them directly into expressions once we have a
known good solution that we want to apply.
Still incomplete, we continue to write the types into expressions along
the way at the moment.
SIL Location diagnostics point at the getLoc, so when the EqualLoc is invalid we get no loc, while the startLoc is a fine alternative for these types of diagnostics.
In Swift 4 mode, no longer consider e.g. 'nsNumber as Int' or 'nsValue as NSRange' to be valid coercions. This would break compatibility with Swift 3, so in Swift 3 mode, accept the coercion, but *also* accept a checked cast without a warning, and raise a migration warning about the unchecked coercion.
These are used from within constraint system code, and for those uses we
need to be reading from the constraint system type map.
Add the parallel constraint system interfaces that call into the
Expr interfaces with the appropriate accessors.
withoutActuallyEscaping has a signature like `<T..., U, V, W> (@nonescaping (T...) throws<U> -> V, (@escaping (T...) throws<U> -> V) -> W) -> W, but our type system for functions unfortunately isn't quite that expressive yet, so we need to special-case it. Set up the necessary type system when resolving an overload set to reference withoutActuallyEscaping, and if a type check succeeds, build a MakeTemporarilyEscapableExpr to represent it in the type-checked AST.
Previously, bridging conversions were handled as a form of "explicit
conversion" that was treated along the same path as normal
conversions in matchTypes(). Historically, this made some
sense---bridging was just another form of conversion---however, Swift
now separates out bridging into a different kind of conversion that is
available only via an explicit "as". This change accomplishes a few
things:
* Improves type inference around "as" coercions. We were incorrectly
inferring type variables of the "x" in "x as T" in cases where a
bridging conversion was expected, which cause some type inference
failures (e.g., the SR-3319 regression).
* Detangles checking for bridging conversions from other conversions,
so it's easier to isolate when we're applying a bridging
conversion.
* Explicitly handle optionals when dealing with bridging conversions,
addressing a number of problems with incorrect diagnostics, e.g.,
complains about "unrelated type" cast failures that would succeed at
runtime.
Addresses rdar://problem/29496775 / SR-3319 / SR-2365.
This parameter implements getType() for the given expression, making
it possible to use this from within the constraint system, which now
has it's own side map for types of expressions.
The tentantive parse is used for diagnostic purposes but can cause code-completion to delay the same decl twice.
The range of CodeCompletionExpr was previously character range which invalidated invariants of the AST.
Fixes:
validation-test/IDE/crashers_fixed/084-swift-parser-consumedecl.swift
validation-test/IDE/crashers_fixed/104-swift-gettypeofcompletioncontextexpr.swift