`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
- Unapplied functions: `if #_hasSymbol(foo(_:))`
- Member references: `if #_hasSymbol(a.x)`
- `.self` expressions on static metatypes: `if #_hasSymbol(SomeEnum.self)`
- Dot syntax call expressions with unapplied functions: `if #_hasSymbol(SomeType.init(_:)`
Additionally, we diagnose when the concretely referenced declaration is not weak linked since this likely indicates that the programmer misidentified the declaration they wish to check or the build is not configured in a way such that the check will be meaningful.
Resolves rdar://99826340
Introduce the compiler directive `#_hasSymbol` which will be used to detect whether weakly linked symbols are present at runtime. It is intended for use in combination with `@_weakLinked import` or `-weak-link-at-target`.
```
if #_hasSymbol(foo(_:)) {
foo(42)
}
```
Parsing only; SILGen is coming in a later commit.
Resolves rdar://99342017
Instead of asking SILGen to build calls to `makeIterator` and
`$generator.next()`, let's synthesize and type-check them
together with the rest of for-in preamble. This greatly simplifies
interaction between Sema and SILGen for for-in statements.
I need to determine when top-level code contains an `await` to determine
whether to make the source file an async context. This logic is
perfectly encapsulated in the `FindInnerAsync` AST walker.
Unfortunately, that is pushed down in Sema/ConstraintSystem and isn't
available at the AST level. I've pulled it up into the brace statement
so that I can use that as part of determining whether the source file is
async in `DeclContext::isAsyncContext`.
Unfortunately, statements don't have an AST context or evaluator or I
would make this a request.
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
Many, many, many types in the Swift compiler are intended to only be allocated in the ASTContext. We have previously implemented this by writing several `operator new` and `operator delete` implementations into these types. Factor those out into a new base class instead.
There are a number of occurances that create implicit `Switch`s by passing `SourceLoc()` for all location paramters. Refactor those occurances out to a separate `createImplicit` method that automatically fills the locations with invalid source locations.
At the moment, if there is an error in the `switch` statement expression or if the `{` is missing, we return `nullptr` from `parseStmtSwitch`, but we consume tokens while trying to parse the `switch` statement. This causes the AST to not contain any nodes for the tokens that were consumed while trying to parse the `switch` statement.
While this doesn’t cause any issues during compilation (compiling fails anyway so not having the `switch` statement in the AST is not a problem) this causes issues when trying to complete inside an expression that was consumed while trying to parse the `switch` statement but doesn’t have a representation in the AST. The solver-based completion approach can’t find the expression that contains the completion token (because it’s not part of the AST) and thus return empty results.
To fix this, make sure we are always creating a `SwitchStmt` when consuming tokens for it.
Previously, one could always assume that a `SwitchStmt` had a valid `LBraceLoc` and `RBraceLoc`. This is no longer the case because of the recovery. In order to form the `SwitchStmt`’s `SourceRange`, I needed to add a `EndLoc` property to `SwitchStmt` that keeps track of the last token in the `SwitchStmt`. Theoretically we should be able to compute this location by traversing the right brace, case stmts, subject expression, … in reverse order until we find something that’s not missing. But if the `SubjectExpr` is an `ErrorExpr`, representing a missing expression, it might have a source range that points to one after the last token in the statement (this is due to the way the `ErrorExpr` is being constructed), therefore returning an invalid range. So overall I thought it was easier and safer to add another property.
Fixes rdar://76688441 [SR-14490]
* Initial draft of async sequences
* Adjust AsyncSequence associated type requirements
* Add a draft implementation of AsyncSequence and associated functionality
* Correct merge damage and rename from GeneratorProtocol to AsyncIteratorProtocol
* Add AsyncSequence types to the cmake lists
* Add cancellation support
* [DRAFT] Implementation of protocol conformance rethrowing
* Account for ASTVerifier passes to ensure throwing and by conformance rethrowing verifies appropriately
* Remove commented out code
* OtherConstructorDeclRefExpr can also be a source of a rethrowing kind function
* Re-order the checkApply logic to account for existing throwing calculations better
* Extract rethrowing calculation into smaller functions
* Allow for closures and protocol conformances to contribute to throwing
* Add unit tests for conformance based rethrowing
* Restrict rethrowing requirements to only protocols marked with @rethrows
* Correct logic for gating of `@rethrows` and adjust the determinates to be based upon throws and not rethrows spelling
* Attempt to unify the async sequence features together
* Reorder try await to latest syntax
* revert back to the inout diagnosis
* House mutations in local scope
* Revert "House mutations in local scope"
This reverts commit d91f1b25b59fff8e4be107c808895ff3f293b394.
* Adjust for inout diagnostics and fall back to original mutation strategy
* Convert async flag to source locations and add initial try support to for await in syntax
* Fix case typo of MinMax.swift
* Adjust rethrowing tests to account for changes associated with @rethrows
* Allow parsing and diagnostics associated with try applied to for await in syntax
* Correct the code-completion for @rethrows
* Additional corrections for the code-completion for @rethrows this time for the last in the list
* Handle throwing cases of iteration of async sequences
* restore building XCTest
* First wave of feedback fixes
* Rework constraints checking for async sequence for-try-await-in checking
* Allow testing of for-await-in parsing and silgen testing and add unit tests for both
* Remove async sequence operators for now
* Back out cancellation of AsyncIteratorProtocols
* Restructure protocol conformance throws checking and cache results
* remove some stray whitespaces
* Correct some merge damage
* Ensure the throwing determinate for applying for-await-in always has a valid value and adjust the for-await-in silgen test to reflect the cancel changes
* Squelch the python linter for line length
bindSwitchCasePatternVars() was introduced as a simpler way to wire up
the "parent" links for case variables with same-named case variables
from the previous case item, and is used in the function builders code
to handle switch statements. It duplicated some logic from the
statement checker that did the same thing using a more complicated
algorithm.
Switch (ha ha) the logic in the statement checker over to using
bindSwitchCasePatternVars(), fixing a bug involving unresolved
patterns along the way, and remove the old code that incrementally
wired up the parent links. The resulting code is simpler and is
unified across the various code paths.
`PreCheckFunctionBuilderRequest` applies `PreCheckExpression` to the
expressions inside the function body. Previously it used to receive only
`AnyFunctionRef` (`FunctionDecl` or `ClosureExpr`) as the parameter.
However, when fast-completion kicks-in, it replaces the body of the
function, then tries to call `PreCheckFunctionBuilderRequest` again, with
the same function decl as before. It used to return cached "Success"
result, but it didn't actually apply `PreCheckExpression`. So any
`UnresolvedDeclRefExpr` remained unresolved.
In this patch, make `PreCheckFunctionBuilderRequest` receive "body" of the
function as well, so it doesn't return the cached result for the *previous*
body.
rdar://problem/65692922
Annotate the covered switches with `llvm_unreachable` to avoid the MSVC
warning which does not recognise the covered switches. This allows us
to avoid a spew of warnings.
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes
This restructures the indentation logic around producing a single IndentContext
for the line being indented. An IndentContext has:
- a ContextLoc, which points to a source location to indent relative to,
- a Kind, indicating whether we should align with that location exactly, or
with the start of the content on its containing line, and
- an IndentLevel with the relative number of levels to indent by.
It also improves the handling of:
- chained and nested parens, braces, square brackets and angle brackets, and
how those interact with the exact alignment of parameters, call arguments,
and tuple, array and dictionary elements.
- Indenting to the correct level after an incomplete expression, statement or
decl.
Resolves:
rdar://problem/59135010
rdar://problem/25519439
rdar://problem/50137394
rdar://problem/48410444
rdar://problem/48643521
rdar://problem/42171947
rdar://problem/40130724
rdar://problem/41405163
rdar://problem/39367027
rdar://problem/36332430
rdar://problem/34464828
rdar://problem/33113738
rdar://problem/32314354
rdar://problem/30106520
rdar://problem/29773848
rdar://problem/27301544
rdar://problem/27776466
rdar://problem/27230819
rdar://problem/25490868
rdar://problem/23482354
rdar://problem/20193017
rdar://problem/47117735
rdar://problem/55950781
rdar://problem/55939440
rdar://problem/53247352
rdar://problem/54326612
rdar://problem/53131527
rdar://problem/48399673
rdar://problem/51361639
rdar://problem/58285950
rdar://problem/58286076
rdar://problem/53828204
rdar://problem/58286182
rdar://problem/58504167
rdar://problem/58286327
rdar://problem/53828026
rdar://problem/57623821
rdar://problem/56965360
rdar://problem/54470937
rdar://problem/55580761
rdar://problem/46928002
rdar://problem/35807378
rdar://problem/39397252
rdar://problem/26692035
rdar://problem/33760223
rdar://problem/48934744
rdar://problem/43315903
rdar://problem/24630624
Add a platform kind and availability attributes for macCatalyst. macCatalyst
uses iOS version numbers and inherits availability from iOS attributes unless
a macCatalyst attribute is explicitly provided.
Rather than having the type checker look for the specific witness to
next() when type checking the for-each loop, which had the effect of
devirtualizing next() even when it shouldn't be, leave the formation
of the next() reference to SILGen. There, form it as a witness
reference, so that the SIL optimizer can choose whether to
devirtualization (or not).
Rather than having the type checker form the ConcreteDeclRef for
makeIterator, have SILGen do it, because it's fairly trivial.
Eliminates some redundant state from the AST.
By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
Use ProtocolConformanceRef::forInvalid() in implementations only as a semantic signal. In one place, use the default constructor to drop the final use of Optional<ProtocolConformanceRef>.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.
Specifically the bad pattern was:
```
for (auto *vd : *caseStmt->getCaseBodyVariables()) { ... }
```
The problem is that the optional is not lifetime extended over the for loop. To
work around this, I changed the API of CaseStmt's getCaseBodyVariable methods to
never return the inner Optional<MutableArrayRef<T>>. Now we have the following 3
methods (ignoring const differences):
1. CaseStmt::hasCaseBodyVariables().
2. CaseStmt::getCaseBodyVariables(). Asserts if the case body variable array was
never specified.
3. CaseStmt::getCaseBodyVariablesOrEmptyArray(). Returns either the case body
variables array or an empty array if we were never given any case body
variable array.
This should prevent anyone else in the future from hitting this type of bug.
radar://49609717
This is a step in the direction of fixing the fallthrough bug. Specifically, in
this commit I give case stmts a set of var decls for the bodies of the case
statement. I have not wired them up to anything except the var decl
list/typechecking.
rdar://47467128