executing unknown code
This means we have to claw back some performance by recognizing harmless
releases.
Such as releases on types we known don't call a deinit with unknown
side-effects.
rdar://143497196
rdar://143141695
Implicit initializers are given a source location within the type they belong to. This works poorly for @objc @implementation classes, because the class they belong to is imported and so those SourceLocs are in a different source buffer from the extension they’re inside, breaking an invariant enforced by index-while-building features.
Fix these SourceLocs to come from the implementation context, so they’ll come from the extension for an objcImpl class and the type itself otherwise.
ASTDumper was never updated to print extra conformance information,
like suppression, preconcurrency, etc. In default mode, we print it
as a comma-delimited list of source-like strings. In JSON mode, we
print objects containing flags.
IterableDeclContext::checkDeserializeMemberErrorInPackage recursively checks if
decls and their member decls are deserialized correctly into another module.
This PR adds a check to make sure the inspected decls are from another module,
and provides an opt-in flag to fail fast on deserialization failure if found.
rdar://143830240
Add ability to automatically chaining the bridging headers discovered from all
dependencies module when doing swift caching build. This will eliminate all
implicit bridging header imports from the build and make the bridging header
importing behavior much more reliable, while keep the compatibility at maximum.
For example, if the current module A depends on module B and C, and both B and
C are binary modules that uses bridging header, when building module A,
dependency scanner will construct a new header that chains three bridging
headers together with the option to build a PCH from it. This will make all
importing errors more obvious while improving the performance.
* Move `AvailabilitySpec` handling logic to AST, so they can be shared
between libParse and ASTGen
* Requestify '-define-availability' arguments parsing and parse them
with 'SwiftParser' according to the 'ParserASTGen' feature flag
* Implement 'AvailableAttr' generation in ASTGen
When calling a distributed function for an actor that might not be local,
the call can throw due to the distributed actor system producing an
error. The function might, independently, also throw. When the
function uses typed throws, we incorrectly treated the call is if it
would always throw the error type specified by the function. This
leads to incorrectly accepting invalid code, and compiler crashes in
SILGen.
The change here is to always mark calls to distributed functions
outside the actor as "implicitly throwing", which makes sure that we
treat the call sites as throwing 'any Error'. The actual handling of
the typed throw (from the local function) and the untyped throw (from
the distributed actor system) occurs in thunk generation in SILGen,
and was already handled correctly.
Fixes rdar://144093249, and undoes the ban introduced by rdar://136467528
'ParserUnit' is used for analyzing syntax structures _mainly_ in
SourceKit.
Since we removed IfConfigDecl from AST, ParserUnit didn't
inclue any AST in #if ... #endif regions even for active region because
it used to consider all inactive. Instead, consider every region
"active" and include all the AST nodes.
rdar://117387631
When diagnosing a declaration that is more available than its context, to
preserve source compatibility we need to downgrade the diagnostic to a warning
when the outermost declaration is an extension. This logic regressed with
https://github.com/swiftlang/swift/pull/77950 and my earlier attempt to fix
this (https://github.com/swiftlang/swift/pull/78832) misidentified what had
regressed.
Really resolves rdar://143423070.
Checking each module dependency info if it is up-to-date with respect to when the cache contents were serialized in a prior scan.
- Add a timestamp field to the serialization format for the dependency scanner cache
- Add a flag "-validate-prior-dependency-scan-cache" which, when combined with "-load-dependency-scan-cache" will have the scanner prune dependencies from the deserialized cache which have inputs that are newer than the prior scan itself
With the above in-place, the scan otherwise proceeds as-is, getting cache hits for entries still valid since the prior scan.
Since resolving the domain of an `@available` attribute is done during type
checking now, diagnostics about unexpected versions for a domain need to be
emitted at that point instead of during parsing. It doesn't make sense to
maintain the special version of this diagnostic that is emitted during parsing
for the universal availability domain only.
SourceKit-LSP tests depend on the exact behavior of this diagnostic (which I
don't plan to preserve) so I'm reverting the consolidation temporarily to get
unblocked.