It was difficult to preserve the existing, buggy behavior of availability
attribute inference with respect to attributes specifying availability for
non-platform-specific domains. Instead, this change improves attribute merging
by tracking every domain independently, and only merging attributes from the
same domain.
AvailableAttr::Kind and AvailabilityDomain are designed to replace
PlatformAgnosticAvailabilityKind, allowing AvailableAttr to more flexibly model
availability for arbitrary domains. For now, the new constructor just
translates its inputs into inputs for the existing constructor. Once all of the
callers of the existing AvailableAttr constructor have been updated to use the
new constructor, the representation of AvailableAttr will be updated to store
the new properties.
Introduce an `unsafe` expression akin to `try` and `await` that notes
that there are unsafe constructs in the expression to the right-hand
side. Extend the effects checker to also check for unsafety along with
throwing and async operations. This will result in diagnostics like
the following:
10 | func sum() -> Int {
11 | withUnsafeBufferPointer { buffer in
12 | let value = buffer[0]
| | `- note: reference to unsafe subscript 'subscript(_:)'
| |- warning: expression uses unsafe constructs but is not marked with 'unsafe'
| `- note: reference to parameter 'buffer' involves unsafe type 'UnsafeBufferPointer<Int>'
13 | tryWithP(X())
14 | return fastAdd(buffer.baseAddress, buffer.count)
These will come with a Fix-It that inserts `unsafe` into the proper
place. There's also a warning that appears when `unsafe` doesn't cover
any unsafe code, making it easier to clean up extraneous `unsafe`.
This approach requires that `@unsafe` be present on any declaration
that involves unsafe constructs within its signature. Outside of the
signature, the `unsafe` expression is used to identify unsafe code.
As an example, use this for the "`@preconcurrency` on import has no
effect" warning, which is not yet working correctly. This disables it
by default but leaves it in place for our testing.
decl being accessed is correct. When this assumption fails due to a deserialization error
of its members, the use site accesses the layout with a wrong field offset, resulting in
UB or a crash. The deserialization error is currently not caught at compile time due to
LangOpts.EnableDeserializationRecovery being enabled by default to allow for recovery of some
of the deserialization errors at a later time. In case of member deserialization, however,
it's not necessarily recovered later on.
This PR tracks whether member deserialization had an error by recursively loading members and
checking for deserialization error, and fails and emits a diagnostic. It provides a way to
prevent resilience bypassing when the deserialized decl's layout is incorrect.
Resolves rdar://132411524
This group has not shipped yet and was added mainly to support test
coverage for d56b7df8a9. Now that we have
unit tests for this, delete the group, pending discussion.