This change ensures that when loading some module dependency 'Bar' which has a package-only dependency on 'Foo', only the following clients attempt to resolve/load 'Foo':
- Source compilation with package-name equal to that of 'Bar'.
- Textual interface compilation of a *'package'* interface with package-name equal to that of 'Bar'.
Ensuring that the following kinds of clients do not attempt to resolve/load 'Foo':
- Source compilation with package-name different to that of 'Bar'
- Textual interface compilation of a public or private interface, regardless of package name.
This fixes the behavior where previously compilation of a Swift textual interface dependency 'X' from its public or private interface, with an interface-specified package-name, from a client without a matching package-name, resulted in a lookup of package-only dependencies of modules loaded into 'X'. This behavior is invalid if we are not building from the package textual interface, becuase the module dependency graph is defined by the package name of the source client, not individual module dependency package name. i.e. In-package module dependencies are resolved/loaded only if the parent source compile matches the package name.
Resolves rdar://139979180
Rather than exposing an `addFile` member on
ModuleDecl, have the `create` members take a
lambda that populates the files for the module.
Once module construction has finished, the files
are immutable.
Code review identified some incorrect UNIMPLEMENTED_CLONEs in DeclAttribute (thank you
Hamish and Rintaro). Fix those, and make sure this can't happen again by checking the type
signatures of clone() in every DeclAttribute subclass.
This PR adds a variadic macro that builds a SwiftAttr string containing
the names of the template type parameters that need to be escapable for
the type to be considered escapable. It also adds logic to interpret
this annotation.
rdar://139065437
Introduce a number of fixes to allow us to fully use declarations that
are produced by applying a peer macro to an imported declarations.
These changes include:
* Ensuring that we have the right set of imports in the source file
containing the macro expansion, because it depends only on the module
it comes from
* Ensuring that name lookup looks in that file even when the
DeclContext hierarchy doesn't contain the source file (because it's
based on the Clang module structure)
Expand testing to be sure that we're getting the right calls,
diagnostics, and generated IR symbols.
Previously we would check if we have a SwitchStmt,
and apply diagnostics such as `checkExistentialTypes`
to the CaseStmts individually. This however would
have been missed for `catch` statements. The change
to consistently call `performStmtDiagnostics` in
closures fixed this for `do-catch`'s in closures,
this commit fixes it for those outside of closures.
Because this is source breaking, the existential
diagnostic is downgraded to a warning until Swift
7 for catch statements specifically.
While here, also apply the ambiguous where clause
diagnostic to `catch` statements.
Fixes a bug where references to the opaque types of other decls were printed
with the `some Type` syntax, breaking the interface. Only the opaque type
introduced by a declaration should be printed with the `some Type` syntax;
other opaque types must always be printed as a stable addresses instead.
Resolves rdar://134582913.
While Span is present, we don't yet have an official way to create Span
instances. Until then, put uses of Span and RawSpan behind an
experimental feature flag (`Span`) that must be set to use these.
Addresses rdar://139308307.
Really this applies to any capture, not just
`self`. Also refactor to make it clear that
parent closures and functions are really the only
cases that matter here.
The construction of type refinement contexts performs lazy expansion
for the contents of macro expansions, so that TRC creation doesn't
force all macros to be expanded. However, the logic that skips macro
expansions would *also* skip some declarations produced within a macro
expansion, even when building the TRC specifically for that macro
expansion buffer. This manifest as missing some availability
information within the TRC, rejecting some well-formed code.
Tune the logic for "don't visit macro expansions when building a TRC"
to recognize when we're building a TRC for that macro expansion.
Fixes rdar://128400301.
When a protocol which has a read (or modify) requirement is built with
the CoroutineAccessors feature, it gains a read2 (or modify2,
respectively) requirement. For this to be compatible with binaries
built without the feature, a default implementation for these new
requirements must be provided. Cause these new accessor requirements to
have default implementations by returning `true` from
`doesAccessorHaveBody` when the context is a `ProtocolDecl` and the
relevant availability check passes.