There were two problems that have been there for years:
- SubstitutionMap::lookupConformance() assumes that every concrete conformance
in the path has a root normal conformance. But calling getRootNormalConformance()
on a self conformance would assert.
- SelfProtocolConformance::getAssociatedConformance() was not implemented. While
self-conforming protocols do not have associated types, they can inherit from
other protocols, and we model this with an associated conformance requirement
having a subject type of `Self`.
Both problems were hidden by the fact that ProtocolConformanceRef::subst()
directly handled self-conforming existentials without calling into the
substitution map. But that is the wrong place for other reasons. The refactoring
in a209ff8869 exposed both of the above issues.
Fixes rdar://problem/151162470.
By default (currently) the closure passed to a parameter with `@_inheritActorContext`
would only inherit isolation from `nonisolated`, global actor isolated or actor
context when "self" is captured by the closure. `always` changes this behavior to
always inherit actor isolation from context regardless of whether it's captured
or not.
Custom main and global executors work hasn't passed Swift Evolution yet,
so we need to avoid leaking it as API until it does.
To that end, underscore all the things.
rdar://151147606
Handle PatternBindingDecls with missing var locations, which can
happen for loop iterator vars, and FuncDecls with missing name and
func locations, which can happen for `defer`. Also while here make
sure we set the source location of a parser-produced ErrorExpr.
Diagnostics only work with `SourceLoc` which is basically a pointer into a buffer of the loaded source file.
But when debug info is de-serialized, the SIL `Location` consists of a filename+line+column.
To "convert" this to a `SourceLoc`, the file must be loaded.
This change adds `DiagnosticEngine.getLocationFromExternalSource` for this purpose.
Also, the new protocol `ProvidingSourceLocation` - to which `SourceLoc` and `Location` conform - help to generalize the helper struct `Diagnostic` and make this "conversion" happen automatically.
Using IncludeTree::FileList to concat the include tree file systems that
are passed on the command-line. This significantly reduce the
command-line size, and also makes the cache key computation a lot
faster.
rdar://148752988
-nostdimport and -nostdlibimport only remove the toolchain and usr/lib/swift search paths, and they leave the framework search paths intact. That makes it impossible to get a fully custom SDK environment. Make their behavior match clang's -nostdinc/-nostdlibinc behavior: treat framework and non-framework paths the same. In other words, -nostdinc removes *all* compiler provided search paths, and -nostdlibinc removes *all* SDK search paths.
Rename SkipRuntimeLibraryImportPaths to SkipAllImportPaths, and ExcludeSDKPathsFromRuntimeLibraryImportPaths to SkipSDKImportPaths to reflect their updated behavior.
Move the DarwinImplicitFrameworkSearchPaths handling from SearchPathOptions to CompilerInvocation, where RuntimeLibraryImportPaths is managed. Rename it to just ImplicitFrameworkSearchPaths, and filter for Darwin when it's set up so that all of the clients don't have to do Darwin filtering themselves later.
rdar://150557632
When defaulting to main-actor isolation, types that have synthesized
conformances (e.g., for Equatable, Hashable, Codable) were getting
nonisolated members by default. That would cause compiler errors
because the conformances themselves defaulted to main-actor isolation
when their types were.
Be careful to only mark these members as 'nonisolated' when it makes
sense, and leave them to get the isolation of their enclosing type
when the conformance might have isolation. This ensures that one can
use synthesis of these protocols along with default main-actor mode.
There is a one-off trick here to force the synthesized CodingKeys to
be nonisolated, because the CodingKey protocol requires Sendable.
We'll separately consider whether to generalize this rule.
More of rdar://150691429.
When we discover a textual module dependency which is a module which was not originally built from source using C++ interop (specifying '-formal-cxx-interoperability-mode=off'), avoid looking up the C++ standard library Swift overlay for it. This is required for the case of the 'Darwin' module, for example, which includes headers which map to C++ stdlib headers when the compiler is operating in C++ interop mode, but the C++ standard library Swift overlay module itself depends on 'Darwin', which results in a cycle. To resolve such situations, we can rely on the fact that Swift textual interfaces of modules which were not built with C++ interop must be able to build without importing the C++ standard library Swift overlay, so we avoid specifying it as a dependency for such modules.
The primary source module, as well as Swift textual module dependencies which *were* built with C++ interop will continue getting a direct depedency of the 'CxxStdlib' Swift module.
Resolves rdar://150222155
Previously we would insert StringRefs that reference the keys in the
map, but that breaks if the invocation ever gets copied. Switch to
`std::string`.
rdar://148130166
Due to a bug in how macros on nodes imported from clang are evaluated,
their function body is not always type checked. This forces type
checking before silgen of a macro originating on a node imported from
clang, to prevent crashing in silgen.
rdar://150940383
This adds an `appendInterpolation` overload to
`DefaultStringInterpolation` that includes a parameter for providing a
default string when the value to interpolate is `nil`. This allows this
kind of usage:
```swift
let age: Int? = nil
print("Your age is \(age, default: "timeless")")
// Prints "Your age is timeless"
```
The change includes an additional fixit when optional values are
interpolated, with a suggestion to use this `default:` parameter.
With `ARCMigrate` and `arcmt-test` removed from clang in
https://github.com/llvm/llvm-project/pull/119269 and the new code
migration experience under way (see
https://github.com/swiftlang/swift-evolution/pull/2673), these options
are no longer relevant nor known to be in use. They were introduced
long ago to support fix-it application in Xcode.
For now, turn them into a no-op and emit a obsoletion warning.
In expectation, this should never happen. Such a situation means that within the same scanning action, Clang Dependency Scanner has produced two different variants of the same module. This is not supposed to happen, but we are currently hunting down the rare cases where it does, seemingly due to differences in Clang Scanner direct by-name queries and transitive header lookup queries.