Before this patch, we have one flag (KeepSyntaxInfo) to turn on two syntax
functionalities of parser: (1) collecting parsed tokens for coloring and
(2) building syntax trees. Since sourcekitd is the only consumer of either of these
functionalities, sourcekitd by default always enables such flag.
However, empirical results show (2) is both heavier and less-frequently
needed than (1). Therefore, separating the flag to two flags makes more
sense, where CollectParsedToken controls (1) and BuildSyntaxTree
controls (2).
CollectingParsedToken is always enabled by sourcekitd because
formatting and syntax-coloring need it; however BuildSyntaxTree should
be explicitly switched on by sourcekitd clients.
resolves: rdar://problem/37483076
The current implementation isn't really useful in the face of generic
overloads. It has never been enabled by default, and isn't useful to
keep around if it is disabled. If we ever want to bring it back,
we know where to look!
This check doesn't make sense anymore because we are still making changes to the old remangler, but not to the old demangler.
Also, this check didn't work in most cases anyway.
rdar://problem/37241935
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
With more syntax nodes being specialized, we'd like this
straight-forward way to pinpoint unknown entities. This diagnostics
is only issued in -emit-syntax frontend action and swift-syntax-test
invocation.
Use the spare bits within the type reference field to describe the kinds
of type metadata records, so that we no longer need to rely on a
separate "flags" field.
Make getDesugaredType() as fast as possible for now. With the old way:
1) Switching over the sugared types turned into a frequently
mispredicted branch because the sugar in the type system is random
as far as the processor is concerned.
2) Storing the underlying/singlely-desugared type at different offsets
in memory adds more code bloat and misprediction.
Short of a major redesign to avoid pointer chasing, this is probably as
fast as the method will get.