This refactors DWARFImporter to become a part of ClangImporter, since
it needs access to many of its implementation details anyway. The
DWARFImporterDelegate is just another mechanism for deserializing
Clang ASTs and once we have a Clang AST, the processing is effectively
the same.
Traditionally a serialized binary Swift module (as used in debug info)
can only be imported if all of its Clang dependencies can be imported
*from source*.
- Swift's ClangImporter imports Clang modules by converting Clang AST
types into Swift AST types.
- LLDB knows how to find Clang types in DWARF or other debug info and
can synthesize a Clang AST from that information.
This patch introduces a DWARFImporter delegate that is implemented by
LLDB to connect these two components. With this, a Clang type can be
found (by name) in the debug info and handed over to ClangImporter to
create a Swift type from it. This path has lower fidelity than
importing the Clang modules from source, since it is missing out on
Swiftication annotations and other metadata that is not serialized in
DWARF, but it's invaluable as a fallback mechanism for the debugger
when source code for the Clang modules isn't available or the modules
are otherwise not buildable.
rdar://problem/49233932
The point of this flag is to avoid re-checking the whole SDK on every
build, since under many circumstances you can assume it hasn't
changed. That worked for Clang modules, but Swift cached modules also
end up with dependencies that shouldn't be updated.
rdar://problem/53279521
Way back in Swift 1 I was trying to draw a distinction between
"overlays", separate libraries that added Swift content to an existing
Objective-C framework, and "the Swift part of a mixed-source
framework", even though they're implemented in almost exactly the same
way. "Adapter module" was the term that covered both of those. In
practice, however, no one knew what "adapter" meant. Bring an end to
this confusion by just using "overlay" within the compiler even for
the mixed-source framework case.
No intended functionality change.
It's a pretty obscure feature (and one we wish we didn't need), but
sometimes API is initially exposed through one module in order to
build another one, and we want the canonical presented name to be
something else. Push this concept into Swift's AST properly so that
other parts of the compiler stop having to know that this is a
Clang-specific special case.
No functionality change in this commit; will be used in the next
commit.
The loading of additional modules by Sema may trigger an out-of-date
PCM rebuild in the Clang module dependencies of the additional
module. A PCM rebuild causes the ModuleManager to unload previously
loaded ASTFiles. For this reason we must use the cached ASTFile
information here instead of the potentially dangling pointer to the
ASTFile that is stored in the clang::Module object.
This fixes a crash in IRGenDebugInfo when generation DIModule context
chains.
rdar://problem/47600180
NormalProtocolConformance::isRetroactive() introduces dependency on swiftClangImporter by calling ClangModuleUnit::getAdapterModule().
Do some refactoring to break the cycle.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
https://github.com/apple/swift/pull/16951 introduced a layering violation between the
AST and ClangImporter libraries; break the layering violation by moving the function
isInOverlayModuleForImportedModule() to ClangModuleLoader.
This reverts commit bb16ee049d,
reversing changes made to a8d831f5f5.
It's not sufficient to solve the problem, and the choices were to do
something more complicated, or just take a simple brute force
approach. We're going with the latter.
ModuleDecl::forAllVisibleModules() now has a includeLinkOnlyModules
parameter. This is intended to be used when computing the set of
libraries to autolink.
* First pass at implementing support for mapping between long double and Float80.
* Only define CLongDouble on platforms where I know what it is.
* remove some hacks that are no longer necessary.
(and 'La'...'Lj')
Use this for the synthesized structs for error enums, as described in
the previous commit, instead of reusing the "private discriminator"
feature. I left some space in the APIs for "related entity kinds" that
are longer than a single character, but I don't actually expect to use
it any time soon. It's mostly just easier to deal with StringRef than
with a bare char.
Note that this doesn't perfectly round-trip to the old mangling; I had
it treat these nodes as private discriminators with a prefixed "$"
instead. We don't depend on that for anything, though.
When importing a C enum with the ns_error_domain attribute, we
synthesize a struct containing an NSError object to represent errors
in that domain. That synthesized struct should have a mangled name
that ties it to the original C enum, if we want it to be stable, and
now it does.
Before: $SSC7MyErrorV (a normal struct, which is a lie)
After: $SSC11MyErrorCode13ns_error_enumLLV
kind=Global
kind=Structure
kind=Module, text="__C_Synthesized"
kind=PrivateDeclName
kind=Identifier, text="ns_error_enum"
kind=Identifier, text="MyErrorCode"
Using the "private discriminator" feature allows us to pack in extra
information about the declaration without changing the mangling
grammar, and without stepping on anything the importer is using.
More rdar://problem/24688918
This lets clients look up types by their /Clang/ names. This is going
to be useful for subsequent commits, but can also have independent use
when going from a class name / selector pair.
This works a around search path problems caused by a module existing
in both the build/install directory and the source directory.
<rdar://problem/35714074>
This avoids having to bring in all members (and extensions!) for an
outer type just to look up a nested type. In the test case attached
(reduced from the project in SR-5284), this actually led to a circular
dependency between deserialization and the importer, which resulted in
a compiler crash.
This is not a new problem, but it's more important with the release of
Swift 4, where a number of Apple SDK types are now newly imported as
member types. (The one in the original bug was
NSView.AutoresizingMask, formerly NSAutoresizingMaskOptions.) Since we
always use the Swift 4 name for cross-references, this affected
everyone, even those still compiling in Swift 3 mode.
https://bugs.swift.org/browse/SR-5284
For the multiple-files mode -emit-pch is still invoked in separate frontend invocation but with using a persistent PCH.
Subsequent frontend invocations use the persistent PCH but they don't need to validate it.
For all-files mode (e.g. WMO) the frontend invocation uses a persistent PCH that it also validates.
- Add CompilerInvocation::getPCHHash
This will be used when creating a unique filename for a persistent
precompiled bridging header.
- Automatically generate and use a precompiled briding header
When we're given both -import-objc-header and -pch-output-dir
arguments, we will try to:
- Validate what we think the PCH filename should be for the bridging
header, based on the Swift PCH hash and the clang module hash.
- If we're successful, we'll just use it.
- If it's out of date or something else is wrong, we'll try to
emit it.
- This gives us a single filename which we can `stat` to check for the
validity of our code completion cache, which is keyed off of module
name, module filename, and module file age.
- Cache code completion results from imported modules
If we just have a single .PCH file imported, we can use that file as
part of the key used to cache declarations in a module. Because
multiple files can contribute to the __ObjC module, we've always given
it the phony filename "<imports>", which never exists, so `stat`-ing it
always fails and we never cache declarations in it.
This is extremely problematic for projects with huge bridging headers.
In the case where we have a single PCH import, this can bring warm code
completion times down to about 500ms from over 2-3s, so it can provide a
nice performance win for IDEs.
- Add a new test that performs two code-completion requests with a bridging header.
- Add some -pch-output-dir flags to existing SourceKit tests that import a bridging
header.
rdar://problem/31198982
The compiler itself no longer uses this API but the debugger does,
in order to pretty-print option sets.
The normal way to test this would be to add an LLDB-side test that
uses a framework with versioned API notes. Unfortunately I can't
think of a straightforward way to test it Swift-side.
This has the effect of propagating the search path to the clang importer as '-iframework'.
It doesn't affect whether a swift module is treated as system or not, this can be done as follow-up enhancement.
Extensive cross-language tooling support needs to bridge decl names between two different languages more freely. This SourceKit request is designed to translate Objc names to Swift names and vice versa. Working similarly to cursor-info requisition, the name translation request requires a Swift reference to a Swift/Clang decl, and the preferred name to translate from, and language kind that the given name belongs to. If the translation succeeds, SourceKit service responds with the corresponding name than belongs to the other kind of language.
Newly introduced keys:
“key.namekind": “source.lang.name.kind.objc” | "source.lang.name.kind.swift"
“key.basename”: “name"
“key.argnames”: [“name"]
“key.selectorpieces”: [“name[:]"]
This commit only implements translation from Objc to Swift.
We're trying to get rid of implicit bridging-header imports, as a feature.
These are IMPORTED_HEADER blocks left in modules built with bridging
headers, that trigger re-importing the bridging header into any client
that imports the module.
As a half-way measure to deprecating them, we add a warning here that
triggers when an implicit bridging-header import occurs that is _not_
suppressed as redundant by clang.