Rename `-enable-cas` to `-compile-cache-job` to align with clang option
names and promote that to a new driver only flag.
Few other additions to driver flag for caching behaviors:
* `-compile-cache-remarks`: now cache hit/miss remarks are guarded behind
this flag
* `-compile-cache-skip`: skip replaying from the cache. Useful as a
debugging tool to do the compilation using CAS inputs even the output
is a hit from the cache.
- Renames ExperimentalPlatformCCallingConvention to
PlatformCCallingConvention.
- Removes non-arm calling convention support as this feature is working
around a clang bug for some arm triples which we hope to see resolved.
- Removes misleading MetaVarName from platform-c-calling-convention
argument.
- Replaces other uses of LLVM::CallingConv::C with
IGM.getOptions().PlatformCCallingConvention().
Adds a new swift-frontend flag to allow users to choose which calling
convention is used to make c function calls. This hidden flag is called
`-experimental-platform-c-calling-convention`.
This behavior is needed to workaround rdar://109431863 (Swift-frontend
produces trapping llvm ir for non-trapping sil). The root cause of this
issue is that IRGen always emits c function calls with llvm's default C
calling convention. However clang may select a different (incompatible)
calling convention for the function, eventually resulting--via
InstCombine and SimplifyCFG--in a trap instead of the function call.
This failure mode is most readily seen with the triple
`armv7em-apple-none-macho` when attempting to call functions taking
struct arguments. Example unoptimized ir below:
```llvm-ir
call void @bar([4 x i32] %17, i32 2), !dbg !109
...
define internal arm_aapcs_vfpcc void @bar(
[4 x i32] %bar.coerce, i32 noundef %x)
```
In the future it would be better to use the clang importer or some other
tool to determine the calling convention for each function instead of
setting the calling convention frontend invocation wide.
Note: I don't know for sure whether or not clang should be explicitly
annotating these functions with a calling convention instead of
aliasing C to mean ARM_AAPCS_VFP for this particular combination of
`-target`, `-mfloat-abi`, and `-mcpu`.
Intro a deserialization mode controlled by the flag
`-experimental-force-workaround-broken-modules` to attempt unsafe
recovery from deserialization failures caused by project issues.
The one issue handled at this time is when a type moves from one module
to another. With this new mode the compiler may be able to pick a
matching type in a different module. This is risky to use, but may help
in a pinch for a client to fix and issue in a library over which they
have no control.
Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.
The frontend option '-clang-header-expose-module' allows the user to specify that APIs from an imported module have been exposed in another generated header, and thus APIs that depend on them can be safely exposed in the current generated header.
This modifies the ClangImporter to introduce an opaque placeholder
representation for forward declared Objective-C interfaces and
protocols when imported into Swift.
In the compiler, the new functionality is hidden behind a frontend
flag -enable-import-objc-forward-declarations, and is on by default
for language mode >6.
The feature is disabled entirely in LLDB expression evaluation / Swift
REPL, regardless of language version.
Once the API has gone through Swift Evolution, we will want to implicitly
import the _Backtracing module. Add code to do that, but set it to off
by default for now.
rdar://105394140
Add frontend flag `-emit-macro-expansion-files diagnostics` to emit any
macro expansion buffers referenced by diagnostics into files in a
temporary directory. This makes debugging type-checking failures in
macro expansions far easier, because you can see them after the
compiler process has exited.
For spatial locality on startup.
Hide collocating metadata functions in a separate section behind a flag.
The default is not to collocate functions.
rdar://101593202
The pass to decide which functions should get stack protection was added in https://github.com/apple/swift/pull/60933, but was disabled by default.
This PR enables stack protection by default, but not the possibility to move arguments into temporaries - to keep the risk low.
Moving to temporaries can be enabled with the new frontend option `-enable-move-inout-stack-protector`.
rdar://93677524
Controlled with a new flag '-direct-clang-cc1-module-build'
This will allow clients to formulate 'swift-frontend' invocations with fully-specified set of cc1 arguments (using '-Xcc -Xclang -Xcc <FLAG>') required for the PCM build, without having to go through the driver.
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
Let's not print the -experimental-spi-only-imports flag in the
swiftinterface and always consider it available there. This is a more
backwards and forwards compatible way to handle swiftinterfaces
evolution.
Adds frontend option -enable-stack-protector to enable emission of a
stack protector.
Disabled by default.
When enabled enables LLVM's strong stack protection mode.
rdar://93677524
I am separating the concern of weakly linking symbols that are introduced at the deployment target from the concern of type checking this new type of potential unavailability.
Resolves rdar://97925900
Put pointers to class_ro_t referenced from generic class patterns in a section __swift_rodatas such that they are discoverable by the linker.
The linker can then make the method lists contained in the class_ro_t relative like it can for objective c class metadata from non-generic swift classes.
rdar://66634459
This flag is required in the driver to eg. choose `clang` vs `clang++`
for the linker. Move it back to a driver option and hide both it and the
stdlib flag from help.
This was already enabled as part of `-enable-implicit-dynamic` but this
new flag allows turning on opaque type erasure all by itself whether or
not `dynamic` is added explicitly.
rdar://97375478