Expose symbols for metadata for the various builtin floating point types
and vector types. This is used by the demangler to handle builtin names.
This is a narrow fix for rdar://problem/45569984 (where we couldn’t
demangle a builtin vector type). A more extensive fix will require us
to add a general runtime facility for creating opaque type metadata
with specific size/alignment/stride/uniquing name.
This runtime function doesn’t always perform instantiation; it’s how we
get a witness table given a conformance, type, and set of instantiation
arguments. Name it accordingly.
Witness table accessors return a witness table for a given type's
conformance to a protocol. They are called directly from IRGen
(when we need the witness table instance) and from runtime conformance
checking (swift_conformsToProtocol digs the access function out of the
protocol conformance record). They have two interesting functions:
1) For witness tables requiring instantiation, they call
swift_instantiateWitnessTable directly.
2) For synthesized witness tables that might not be unique, they call
swift_getForeignWitnessTable.
Extend swift_instantiateWitnessTable() to handle both runtime
uniquing (for #2) as well as handling witness tables that don't have
a "generic table", i.e., don't need any actual instantiation. Use it
as the universal entry point for "get a witness table given a specific
conformance descriptor and type", eliminating witness table accessors
entirely.
Make a few related simplifications:
* Drop the "pattern" from the generic witness table. Instead, store
the pattern in the main part of the conformance descriptor, always.
* Drop the "conformance kind" from the protocol conformance
descriptor, since it was only there to distinguish between witness
table (pattern) vs. witness table accessor.
* Internalize swift_getForeignWitnessTable(); IRGen no longer needs to
call it.
Reduces the code size of the standard library (+assertions build) by
~149k.
Addresses rdar://problem/45489388.
Collapse the generic witness table, which was used only as a uniquing
data structure during witness table instantiation, into the protocol
conformance record. This colocates all of the constant protocol conformance
metadata and makes it possible for us to recover the generic witness table
from the conformance descriptor (including looking at the pattern itself).
Rename swift_getGenericWitnessTable() to swift_instantiateWitnessTable()
to make it clearer what its purpose is, and take the conformance descriptor
directly.
Have clients pass the requirement base descriptor to
swift_getAssociatedTypeWitness(), so that the witness index is just one
subtraction away, avoiding several dependent loads (witness table ->
conformance descriptor -> protocol descriptor -> requirement offset)
in the hot path.
Rather than rely on the metadata initialization function to compute and
fill in the superclass, use the mangled superclass name to construct the
superclass metadata.
The functions in LibcShims are used externally, some directly and some through @inlineable functions. These are changed to SWIFT_RUNTIME_STDLIB_SPI to better match their actual usage. Their names are also changed to add "_swift" to the front to match our naming conventions.
Three functions from SwiftObject.mm are changed to SPI and get a _swift prefix.
A few other support functions are also changed to SPI. They already had a prefix and look like they were meant to be SPI anyway. It was just hard to notice any mixup when they were #defined to the same thing.
rdar://problem/35863717
swift_getAssociatedTypeWitness() is logically readnone because it is the
only function that accesses associated type witness information within the
witness table. Mark calls to it as readnone and nounwind.
Rather than storing associated type metadata access functions in
witness tables, initially store a pointer to a mangled type name.
On first access, demangle that type name and replace the witness
table entry with the resulting type metadata.
This reduces the code size of protocol conformances, because we no
longer need to create associated type metadata access functions for
every associated type, and the mangled names are much smaller (and
sharable). The same code size improvements apply to defaulted
associated types for resilient protocols, although those are more
rare. Witness tables themselves are slightly smaller, because we
don’t need separate private entries in them to act as caches.
On the caller side, associated type metadata is always produced via
a call to swift_getAssociatedTypeWitness(), which handles the demangling
and caching behavior.
In all, this reduces the size of the standard library by ~70k. There
are additional code-size wins that are possible with follow-on work:
* We can stop emitting type metadata access functions for non-resilient
types that have constant metadata (like `Int`), because they’re only
currently used as associated type metadata access functions.
* We can stop emitting separate associated type reflection metadata,
because the reflection infrastructure can use these mangled names
directly.
If a class has a backward deployment layout:
- We still want to emit it using the FixedClassMetadataBuilder.
- We still want it to appear in the objc_classes section, and get an
OBJC_CLASS_$_ symbol if its @objc.
- However, we want to use the singleton metadata initialization pattern
in the metadata accessor.
- We want to emit metadata for all field types, and call the
swift_updateClassMetadata() function to initialize the class
metadata.
For now, this function just performs the idempotent initialization of
invoking a static method on the class, causing it to be realized with
the Objective-C runtime.
- Rename _swift_initializeSuperclass() to copySuperclassMetadataToSubclass(),
- Factor out initClassFieldOffsetVector()
- Factor out initClassVTable()
- Factor out initGenericObjCClass()
Update the instances of checks for architectures to be more broad for different
spellings of the architecture macro. Certain targets use `_M_ARM` and others
use `__arm__`. Similarly, arm64/aarch64 has `_M_ARM64`, `__arm64__` and
`__aarch64__` as spellings. This just mechanically goes through and encodes the
various spellings.
Take the opportunity to replace some raw checks with `defined` checks which
avoids a pedantic warning due to the undefined macro when performing the check
as the preprocessor may warn about an undefined condition evaluating to `0`.
Describe the consequences of missing metadata instead of just posting a scary
message about a bug. Furthermore, since these warnings tend to show up in
playgrounds, and probably aren't relevant to the user of a playground, suppress
them when running in a playground. rdar://problem/44642942
Previously we would emit class metadata for classes with resilient
ancestry, and relocate it at runtime once the correct size was known.
However most of the fields were blank, so it makes more sense to
construct the metadata from scratch, and store the few bits that we
do need in a true-const pattern where we can use relative pointers.
They were, already, but remove the isConstant parameter to
getAddrOfTypeMetadataPattern(), and just assert that its true for
patterns in defineTypeMetadata() instead.
Also, metadata patterns are i8*, not i8**. In fact they don't contain any
absolute pointers at all.
Should be NFC other than the LLVM type change.
Now that we don't need the superclass before calling
swift_relocateClassMetadata(), it seems simpler to set it
here instead of doing it in various places in IRGen.
Using the superclass metadata here no longer makes sense with two-phase
init, in case the superclass metadata depends on the class being
instantiated.
It would also be nice to rework the resilient class metadata 'pattern'
to be its own data structure that's true const, instead of just the
prefix of a real class metadata, but for now let's keep the existing
crappy design.
These functions don't accept local variable heap memory, although the names make it sound like they work on anything. When you try, they mistakenly identify such things as ObjC objects, call through to the equivalent objc_* function, and crash confusingly. This adds Object to the name of each one to make it more clear what they accept.
rdar://problem/37285743
Previously, when a tuple type had non-fixed layout, we would compute
a layout by building the metadata for that tuple type and then
extracting the layout from the VWT. This can be quite expensive
because it involves constructing the exact metadata for types like
arrays and functions despite those types being fixed-layout across
all instantiations. It also tends to cause unnecessary recursive-type
issues, especially with enums where tuples are currently used to model
cases with mutliple payloads. Since we just need a layout, computing
it directly from element layouts instead of constructing metadata for
the formal type lets us take advantage of all the other fast paths for
layout construction, e.g. for fixed types and single-field aggregates.
This is a good improvement overall, but it also serves to alleviate
some of the problems of rdar://40810002 / SR-7876 in a way that
might be suitable for integration to 4.2.
- `swift_getForeignTypeMetadata` is now a request/response function.
- The initialization function is now a completion function, and the
pointer to it has moved into the type descriptor.
- The cache variable is no longer part of the ABI; it's an
implementation detail of the access function.
- The two points above mean that there is no special header on foreign
type metadata and therefore that they can be marked constant when
there isn't something about them that needs to be initialized.
The only foreign-metadata initialization we actually do right now is
of the superclass field of a foreign class, and since that relationship
is a proper DAG, it's not actually possible to have recursive
initialization problems. But this is the right long-term thing to do,
and it removes one of the last two clients of once-based initialization.
The prefab'ed value witness tables for reference storage types are a
premature optimization. Not all scenarios are covered, and those that
are "look suspect" according to John McCall.
From what I see the only fields are DATA_VALUE_WITNESS which
all have type size_t. I converted them to use the target-dependent
`StoredSize`. While I was around I fixed also isValueInline()
to do the right thing (it was using ValueBuffer instead of
TargetValueBuffer) and all the getters for the data value witnesses.
<rdar://problem/41546568>
Switch one entry point in the runtime (swift_getExistentialTypeMetadata)
to use ProtocolDescriptorRef rather than a protocol descriptor. Update
IRGen to produce ProtocolDescriptorRef instances for its calls, setting
the discriminator bit appropriately.
Within the runtime, verify that all instances of ProtocolDescriptorRef have
the right layout, i.e., the discriminator bit is set for @objc protocols
but not Swift protocols.
The runtime doesn't really need Compiler.h. It just needs some
visibility macros which can be inlined here instead of pulling
the whole heavyweight header (including its transitive closure,
llvm-config.h). This is becoming more important now that Compiler.h
includes C++ headers (namely, <new>), and swift/Runtime/Config.h
can be included from C or Objective-C files (causing build failures).
<rdar://problem/35860874>