* let `SIL.Type` conform to `TypeProperties` to share the implementation of common type properties between the AST types and `SIL.Type`
* call references to an `AST.Type` `rawType` (instead of just `type`)
* remove unneeded stuff
* add comments
The `unchecked_ref_cast` is designed to be able to cast between
`Optional<ClassType>` and `ClassType`. We need to handle these cases by
checking if the type is optional and adjust the path accordingly.
* factor out common methods of AST Type/CanonicalType into a `TypeProperties` protocol.
* add more APIs to AST Type/CanoncialType.
* move `MetatypeRepresentation` from SIL.Type to AST.Type and implement it with a swift enum.
* let `Builder.createMetatype` get a CanonicalType as instance type, because the instance type must not be a lowered type.
The optional C++ type was bridged to a non-optional Swift type.
The correct way is to bridged the non-optional C++ type to the non-optional Swift type.
* getting the formal source and target types of casts
* `isFromVarDecl` and `usesMoveableValueDebugInfo` for AllocStackInst
* WitnessMethod APIs
* `TryApply.isNonAsync`
Check if an operand's instruction has been deleted in `UseList.next()`.
This allows to delete an instruction, which has two uses of a value, during use-list iteration.
This is necessary to fix a recent OSSA bug that breaks common occurrences on
mark_dependence [nonescaping]. Rather than reverting that change above, we make
forward progress toward implicit borrows scopes, as was the original intention.
In the near future, all InteriorPointer instructions will create an implicit
borrow scope. This means we have the option of not emitting extraneous
begin/end_borrow instructions around intructions like ref_element_addr,
open_existential, and project_box. After that, we can also migrate
GuaranteedForwarding instructions like tuple_extract and struct_extract.
We use the formal source type do decide whether a checked_cast_br is
known to succeed/fail. If we don't update it we loose that optimization
That is:
```
checked_cast_br AnyObject in %2 : X to X, bb1, bb2
```
Will not be simplified even though the operand and the destintation type
matches.
And move the implementation of `SIL.Type.canBeClass` to the AST Type. The SIL Type just calls the AST Type implementation.
Also rename `SIL.Type.canonicalASTType` -> `SIL.Type.astType`.
As the optimizer uses more and more AST stuff, it's now time to create an "AST" module.
Initially it defines following AST datastructures:
* declarations: `Decl` + derived classes
* `Conformance`
* `SubstitutionMap`
* `Type` and `CanonicalType`
Some of those were already defined in the SIL module and are now moved to the AST module.
This change also cleans up a few things:
* proper definition of `NominalTypeDecl`-related APIs in `SIL.Type`
* rename `ProtocolConformance` to `Conformance`
* use `AST.Type`/`AST.CanonicalType` instead of `BridgedASTType` in SIL and the Optimizer
* add missing APIs
* bridge the entries as values and not as pointers
* add lookup functions in `Context`
* make WitnessTable.Entry.Kind enum cases lower case
This makes ManagedBuffer available and usable in Embedded Swift, by:
- Removing an internal consistency check from ManagedBuffer that relies on metatypes.
- Making the .create() API transparent (to hoist the metatype to the callee).
- Adding a AllocRefDynamicInst simplification to convert `alloc_ref_dynamic` to `alloc_ref`, which removes a metatype use.
- Adding tests for the above.
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
Make SILLInkage available in SIL as `SIL.Linkage`.
Also, rename the misleading Function and GlobalVariable ABI `isAvailableExternally` to `isDefinedExternally`