This ensures that opened archetypes always inherit any outer generic parameters from the context in which they reside. This matters because class bounds may bind generic parameters from these outer contexts, and without the outer context you can wind up with ill-formed generic environments like
<τ_0_0, where τ_0_0 : C<T>, τ_0_0 : P>
Where T is otherwise unbound because there is no entry for it among the generic parameters of the environment's associated generic signature.
Reduces the number of _ContiguousArrayStorage metadata.
In order to support constant time bridging we do need to set the correct
metadata when we bridge to Objective-C. This is so that the type check
succeeds when bridging back from Objective-C to reuse the storage
instance rather than bridging the elements.
To support dynamically setting the `_ContiguousArrayStorage` element
type i needed to add support for optimizing `alloc_ref_dynamic`
throughout the optimizer.
Possible future improvements:
* Use different metadata such that we can disambiguate native Swift
classes during destruction -- allowing native release rather then unknown
release usage.
* Optimize the newly added semantic function
getContiguousArrayStorageType
rdar://86171143
The main effect of this will be that in IRGen we will use llvm.dbg.addr instead
of llvm.dbg.declare. We must do this since llvm.dbg.declare implies that the
given address is valid throughout the program.
This just adds the instructions/printing/parsing/serialization/deserialization.
rdar://85020571
Clients can explicitly ask for the opened existential type on the archetype's generic environment,
or use `getExistentialType` to obtain a specific archetype's upper bounds.
This is an instruction that I am going to use to drive some of the ownership
based dataflow optimizations that I am writing now. The instruction contains a
kind that allows one to know what type of checking is required and allows the
need to add a bunch of independent instructions for independent checkers. Each
checker is responsible for removing all of its own mark instructions. NOTE:
MarkMustCheckInst is only allowed in Raw SIL since once we are in Canonical SIL
we want to ensure that all such checking has already occurred.
The new flag will be used to track whether a move_value corresponds to a
source-level lexical scope. Here, the flag is just added to the
instruction and represented in textual and serialized SIL.
Form opened archetype types based on an interface type and existential
type, rather than assuming all OpenedArchetypeType instances only
represent the root. Sink the UUID, existential type, and actual creation
of the opened archetype into the opened generic environment, so we
consistently only create new archetype instances from the generic
environment. This slims down OpenedArchetypeType and makes it work
similarly to the other archetype kinds, as well as generalizing it
to support nested types.
Sink the existential type and UUID of an
Introduce a new instruction `dealloc_stack_ref ` and remove the `stack` flag from `dealloc_ref`.
The `dealloc_ref [stack]` was confusing, because all it does is to mark the deallocation of the stack space for a stack promoted object.
This instruction is similar to a copy_addr except that it marks a move of an
address that has to be checked. In order to keep the memory lifetime verifier
happy, the semantics before the checker runs are the mark_unresolved_move_addr is
equivalent to copy_addr [init] (not copy_addr [take][init]).
The use of this instruction is that Mandatory Inlining converts builtin "move"
to a mark_unresolved_move_addr when inlining the function "_move" (the only
place said builtin is invoked).
This is then run through a special checker (that is later in this PR) that
either proves that the mark_unresolved_move_addr can actually be a move in which
case it converts it to copy_addr [take][init] or if it can not be a move, emit
an error and convert the instruction to a copy_addr [init]. After this is done
for all instructions, we loop back through again and emit an error on any
mark_unresolved_move_addr that were not processed earlier allowing for us to
know that we have completeness.
NOTE: The move kills checker for addresses is going to run after Mandatory
Inlining, but before predictable memory opts and friends.
Required for UnsafeRawPointer.withMemoryReboud(to:).
%out_token = rebind_memory %0 : $Builtin.RawPointer to %in_token
%0 must be of $Builtin.RawPointer type
%in_token represents a cached set of bound types from a prior memory state.
%out_token is an opaque $Builtin.Word representing the previously bound
types for this memory region.
This instruction's semantics are identical to ``bind_memory``, except
that the types to which memory will be bound, and the extent of the
memory region is unknown at compile time. Instead, the bound-types are
represented by a token that was produced by a prior memory binding
operation. ``%in_token`` must be the result of bind_memory or
This is a signal to the move value kill analysis that this is a move that should
have diagnostics emitted for it. It is a temporary addition until we add
MoveOnly to the SIL type system.
The key thing is that the move checker will not consider the explicit copy value
to be a copy_value that can be rewritten, ensuring that any uses of the result
of the explicit copy_value (consuming or other wise) are not checked.
Similar to the _move operator I recently introduced, this is a transparent
function so we can perform one level of specialization and thus at least be
generic over all concrete types.
In this PR, preFixUp function in SILCloner is added which can be
overidden by implementations so that the SIL is cleaned for `commonFixup` processing.
For begin_apply inlining, blocks split due to end_apply and abort_apply
are fixed when no yields are found.
Fix two bugs:
- FirstArgOwnershipForwardingSingleValueInst needs to forward its first operand.
- select_value needs to be a ForwardedBorrow for all cases and the default.
Changed the frontend flag to -enable-experimental-lexical-lifetimes from
-enable-experimental-defined-lifetimes.
Changed the attribute on begin_borrow from [defined] to [lexical].
The new flag will be used to track whether a borrow scope corresponds to
a source-level lexical scope. Here, the flag is just documented, added
to the instruction, represented in textual and serialized SIL, and
cloned.
This is a new instruction that can be used by SILGen to perform a semantic move
in between two entities that are considered separate variables at the AST
level. I am going to use it to implement an experimental borrow checker.
This PR contains the following:
1. I define move_value, setup parsing, printing, serializing, deserializing,
cloning, and filled in all of the visitors as appropriate.
2. I added createMoveValue and emitMoveValueOperation SILBuilder
APIs. createMoveValue always creates a move and asserts is passed a trivial
type. emitMoveValueOperation in contrast, will short circuit if passed a
trivial value and just return the trivial value.
3. I added IRGen tests to show that we can push this through the entire system.
This is all just scaffolding for the instruction to live in SIL land and as of
this PR doesn't actually do anything.
The new flag will be used to track whether a borrow scope corresponds to
a source-level lexical scope. Here, the flag is just added to the
instruction and represented in textual and serialized SIL.
SROA and Mem2Reg now can leverage DIExpression -- op_fragment, more
specifically -- to generate correct debug info for optimized SIL. Some
important highlights:
- The new swift::salvageDebugInfo, similar to llvm::salvageDebugInfo,
tries to restore / transfer debug info from a deleted instruction.
Currently I only implemented this for store instruction whose
destination is an alloc_stack value.
- Since we now have source-variable-specific SIL location inside a
`debug_value` instruction (and its friends), this patch teaches
SILCloner and SILInliner to remap the debug scope there in addition
to debug scope of the instruction.
- DCE now does not remove `debug_value` instruction whose associating
with a function argument SSA value that is not used elsewhere. Since
that SSA value will not disappear so we should keep the debug info.
SILGen this builtin to a mandatory hop_to_executor with an actor type
operand.
e.g.
Task.detached {
Builtin.hopToActor(MainActor.shared)
await suspend()
}
Required to fix a bug in _runAsyncMain.
Instead, put the archetype->instrution map into SIlModule.
SILOpenedArchetypesTracker tried to maintain and reconstruct the mapping locally, e.g. during a use of SILBuilder.
Having a "global" map in SILModule makes the whole logic _much_ simpler.
I'm wondering why we didn't do this in the first place.
This requires that opened archetypes must be unique in a module - which makes sense. This was the case anyway, except for keypath accessors (which I fixed in the previous commit) and in some sil test files.
Through various means, it is possible for a synchronous actor-isolated
function to escape to another concurrency domain and be called from
outside the actor. The problem existed previously, but has become far
easier to trigger now that `@escaping` closures and local functions
can be actor-isolated.
Introduce runtime detection of such data races, where a synchronous
actor-isolated function ends up being called from the wrong executor.
Do this by emitting an executor check in actor-isolated synchronous
functions, where we query the executor in thread-local storage and
ensure that it is what we expect. If it isn't, the runtime complains.
The runtime's complaints can be controlled with the environment
variable `SWIFT_UNEXPECTED_EXECUTOR_LOG_LEVEL`:
0 - disable checking
1 - warn when a data race is detected
2 - error and abort when a data race is detected
At an implementation level, this introduces a new concurrency runtime
entry point `_checkExpectedExecutor` that checks the given executor
(on which the function should always have been called) against the
executor on which is called (which is in thread-local storage). There
is a special carve-out here for `@MainActor` code, where we check
against the OS's notion of "main thread" as well, so that `@MainActor`
code can be called via (e.g.) the Dispatch library's
`DispatchQueue.main.async`.
The new SIL instruction `extract_executor` performs the lowering of an
actor down to its executor, which is implicit in the `hop_to_executor`
instruction. Extend the LowerHopToExecutor pass to perform said
lowering.
The comment in LowerHopToActor explains the design here.
We want SILGen to emit hops to actors, ignoring executors,
because it's easier to fully optimize in a world where deriving
an executor is a non-trivial operation. But we also want something
prior to IRGen to lower the executor derivation because there are
useful static optimizations we can do, such as doing the derivation
exactly once on a dominance path and strength-reducing the derivation
(e.g. exploiting static knowledge that an actor is a default actor).
There are probably phase-ordering problems with doing this so late,
but hopefully they're restricted to situations like actors that
share an executor. We'll want to optimize that eventually, but
in the meantime, this unblocks the executor work.
If the '[poison]' flag is set, then all references within this debug
value will be overwritten with a sentinel at this point in the
program. This is used in debug builds when shortening non-trivial
value lifetimes to ensure the debugger cannot inspect invalid
memory. `debug_value` instructions with the poison flag are not
generated until OSSA islowered. They are not expected to be serialized
within the module, and the pipeline is not expected to do any
significant code motion after lowering.
Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
* Refactoring: replace "Destination" and the ownership qualifier by a single "Mode". This represents much better the mode how the instruction is to be lowered. NFC
* Make assign_by_wrapper printable and parseable.
* Fix lowering of the assign modes for indirect results of the init-closure: The indirect result was initialized and not assigned to. The fix is to insert a destroy_addr before calling the init closure. This fixes a memory lifetime error and/or a memory leak. Found by inspection.
* Fix an iterator-invalidation crash in RawSILInstLowering
* Add tests for lowering assign_by_wrapper.
cloning
forwardingOwnershipKind can differ from the operand's ownershipKind. We
need to copy forwardingOwnershipKind while cloning these instructions.
Also print the forwarding ownership kind when it differs from its
operand's ownershipKind
This is a follow up of #36063
The forwardingOwnershipKind need not be the same as operandOwnershipKind
after optimizations like SILCombine. While cloning, make sure to
propagate this correctly, if not this results in unnecessary ownership
verifier errors.
If we know that we have a FunctionRefInst (and not another variant of FunctionRefBaseInst), we know that getting the referenced function will not be null (in contrast to FunctionRefBaseInst::getReferencedFunctionOrNull).
NFC
Interestingly this problem can only occur if one invokes
MarkUninitializedInst::getKind() directly. Once our instruction is just a
SILInstruction, we call the appropriate method so we didn't notice it.
I used Xcode's refactoring functionality to find all of the invocation
locations.
This makes it easier to understand conceptually why a ValueOwnershipKind with
Any ownership is invalid and also allowed me to explicitly document the lattice
that relates ownership constraints/value ownership kinds.