Now that we actually know the region that non transferrable things belong to, we
can use this information to give a better diagnostic here.
A really nice effect of this is that we now emit that actor isolated parameters
are actually actor isolated instead of task isolated.
In a subsequent commit, this is going to let me begin handling parameters with
actor regions in a nice way (and standardize all of the errors).
This is meant to be a refactoring commit that uses the current tests in tree to
make sure I did it correctly, so no tests need to be updated.
To keep this as an NFC commit, I only modeled initially actor isolated using
this. I am going to make it so that we properly treat global actor isolated
values as actor isolated/etc in a subsequent commit.
When we run RegionAnalysis, since it uses RPO order, we do not visit dead
blocks. This can create a problem when we emit diagnostics since we may merge in
a value into the region that was never actually defined. In this patch, if we
actually visit the block while performing dataflow, I mark a bit in its state
saying that it was live. Then when we emit diagnostics, I do not visit blocks
that were not marked live.
rdar://124042351
The specific semantics is if we assign into a transferring parameter's field,
then we "merge" src's value into the transferring parameter, so we
conservatively leave the region of the transferring parameter alone. If we
assign over the entire transferring parameter, we perform an assign fresh since
any value that used to be in the transferring parameter cannot reference
anything in its new value since they are all gone.
Before this commit, this was done at the beginning of TransferNonSendable. I
thought that those checks would be sufficient to ensure that
RegionAnalysisFunctionInfo was not created for functions that we do not
support. Turns out when we perform certain forms of verification, we force all
function analyses to be created for all functions meaning that we would create a
RegionAnalysisFunctionInfo for such an unsupported function causing us to hit
asserts.
In this commit, I move the check to whether or not we support a function into
RegionAnalysisFunctionInfo itself and use that to determine if we should run
TransferNonSendable. This additionally allows me to change
RegionAnalysisFunctionInfo so that one can construct one for an unsupported
function... as long as one doesn't actually touch any of its methods. If one
does, I put in an assert so we will know that operator error has occured.
NFCI. This is just a pure refactor of the analysis part of TransferNonSendable
into a separate SIL level analysis so it can be reused by other passes.
The reason that I am committing this earlier is that I am working concurrently
on other patches that change TransferNonSendable itself and I want to avoid
issues when rebasing those patches. Getting this patch into tree earlier avoids
that.
This is in preparation for adding a new flow sensitive initialization pass that
combines region based analysis with the current flow sensitive isolation's
diagnostic emitter. The idea is that we want to preserve the diagnostics from
that pass rather than try to make our own as an initial step.
To verify if a function may read from an indirect argument, don't use AliasAnalysis.
Instead use the CalleeCache to get the list of callees of an apply instruction.
Then use a simple call-back into the swift Function to check if a callee has any relevant memory effect set.
This avoids a dependency from SIL to the Optimizer.
It fixes a linker error when building some unit tests in debug.
In C++20, the compiler will synthesize a version of the operator
with its arguments reversed to ease commutativity. This reversed
version is ambiguous with the hand-written operator when the
argument is const but `this` isn't.
Although by analogy with def instructions as barrier instructions one
could understand how a block where the def appears as a phi could be
regarded as a barrier block, the analogy is nonobvious.
Reachability knows the difference between an initial block and a barrier
block. Although most current clients don't care about this distinction,
one does. Here, Reachability calls back with visitInitialBlock for the
former and visitBarrierBlock for the latter.
Most clients are updated to have the same implementation in both
visitBarrierBlock and visitInitialBlock. The findBarriersBackward
client is updated to retain the distinction and pass it on to its
clients. Its one client, CanonicalizeOSSALifetime is updated to have a
simpler handling for barrier edges and to ignore the initial blocks.
When serializing modules with `-experimental-skip-all-function-bodies`, this
analysis was eagerly populating a cache that would go unused since there is no
optimization to do. With `-experimental-lazy-typecheck`, this work would also
trigger unnecessary typechecking requests. NFC.
When serializing modules with `-experimental-skip-all-function-bodies`, this
analysis was eagerly populating a cache that would go unused since there is no
optimization to do. With `-experimental-lazy-typecheck`, this work would also
trigger unnecessary typechecking requests. NFC.
llvm::SmallSetVector changed semantics
(https://reviews.llvm.org/D152497) resulting in build failures in Swift.
The old semantics allowed usage of types that did not have an
`operator==` because `SmallDenseSet` uses `DenseSetInfo<T>::isEqual` to
determine equality. The new implementation switched to using
`std::find`, which internally uses `operator==`. This type is used
pretty frequently with `swift::Type`, which intentionally deletes
`operator==` as it is not the canonical type and therefore cannot be
compared in normal circumstances.
This patch adds a new type-alias to the Swift namespace that provides
the old semantic behavior for `SmallSetVector`. I've also gone through
and replaced usages of `llvm::SmallSetVector` with the
`Swift::SmallSetVector` in places where we're storing a type that
doesn't implement or explicitly deletes `operator==`. The changes to
`llvm::SmallSetVector` should improve compile-time performance, so I
left the `llvm::SmallSetVector` where possible.
Sometimes when building the SwiftCompilerSources with a host compiler, linking fails with unresolved symbols for DenseMap and unique_ptr destroys.
This looks like a problem with C++ interop: the compiler thinks that destructors for some Analysis classes are materialized in the SwiftCompilerSources, but they are not.
Explicitly defining those destructors fixes the problem.
This is code that I am fairly familiar with but it still took a day of
investigation to figure out how it is supposed to be used now in the
presence of bridging.
This primarily involved ruling out the possibity that the mid-level
Swift APIs could at some point call into the lower-level C++ APIs.
The biggest problem was that AliasAnalysis::getMemoryBehaviorOfInst()
was declared as a public interface, and it's name indicates that it
computes the memory behavior. But it is just a wrapper around a Swift
API and never actually calls into any of the C++ logic that is
responsible for computing memory behavior!
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
The `isEscaping` function is called a lot from ARCSequenceOpt and ReleaseHoisting.
To avoid quadratic complexity for large functions, limit the amount of work what the EscapeUtils are allowed to to.
This keeps the complexity linear.
The arbitrary limit is good enough for almost all functions.
It lets the EscapeUtils do several hundred up/down walks which is much more than needed in most cases.
Fixes a compiler hang
https://github.com/apple/swift/issues/63846
rdar://105795976
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
This invalidation kind is used when a compute-effects pass changes function effects.
Also, let optimization passes which don't change effects only invalidate the `FunctionBody` and not `Everything`.