Replace the generic `List` with the (non-generic) `InstructionList` and `BasicBlockList`.
The `InstructionList` is now a bit different than the `BasicBlockList` because it supports that instructions are deleted while iterating over the list.
Also add a test pass which tests instruction modification while iteration.
The testing works by way of a new pass "UnitTestRunner" and a new
instruction test_specification. When a function contains
test_specification instructions, it invokes the UnitTest subclass named
in the test_specification instruction with the arguments specified in
that instruction.
For example, when running the unit-test-runner class, having the
instructions
```
test_specification "my-neato-utility 19 @function[callee].block[2] @trace[2]"
test_specification "my-neato-utility 43 @block @trace"
```
would result in the test associated with "my-neato-utility" in
UnitTestRunner.cpp being invoked twice. Once with (19, aBlock, aValue),
and once with (43, anotherBlock, someOtherValue). That UnitTest
subclass class would need to call takeUInt, takeBlock, and takeTrace on
the Arguments struct it is invoked with. It would then pass those
arguments along to myNeatoUtility and dump out interesting results. The
results would then be FileChecked.
Computes the side effects for a function, which consists of argument- and global effects.
This is similar to the ComputeEscapeEffects pass, just for side-effects.
Dead-end blocks are blocks from which there is no path to the function exit (`return`, `throw` or unwind).
These are blocks which end with an unreachable instruction and blocks from which all paths end in "unreachable" blocks.
Supports unit testing for OSSA lifetime utilities. These utilities are
the basis of maintaining valid OSSA form. They need to handle invalid
SIL (with incomplete OSSA lifetimes) because we rely on them to fixup
SIL after SILGen and after any transformation that may affect
ownership.
NOTE: If one does not define a deinit on a move only type, if a destroy_value
lasts until IRGen time we will assert since I haven't implemented support in
IRGen for the destroy value witness for move only types. That being said, just
creating a deinit by adding to such a type:
```
deinit {}
```
is pretty low overhead for the experiments we want to use this for.
Some notes:
1. I added support for both loadable/address only types.
2. These tests are based off of porting the move only object tests for inout,
vars, mutating self, etc.
3. I did not include already written tests for address only types in this
specific merge since I need to change us to borrow move only var like types.
Without that, we get a lot of spurious error msgs and the burden of writing that
is not worth it. So instead in a forthcoming commit where I fix that issue in
SILGen, I will commit the corresponding address only tests for this work.
4. I did not include support for trivial types in this. I am going to do
object/address for that at the same time.
It decides which functions need stack protection.
It sets the `needStackProtection` flags on all function which contain stack-allocated values for which an buffer overflow could occur.
Within safe swift code there shouldn't be any buffer overflows.
But if the address of a stack variable is converted to an unsafe pointer, it's not in the control of the compiler anymore.
This means, if there is any `address_to_pointer` instruction for an `alloc_stack`, such a function is marked for stack protection.
Another case is `index_addr` for non-tail allocated memory.
This pattern appears if pointer arithmetic is done with unsafe pointers in swift code.
If the origin of an unsafe pointer can only be tracked to a function argument, the pass tries to find the root stack allocation for such an argument by doing an inter-procedural analysis.
If this is not possible, the fallback is to move the argument into a temporary `alloc_stack` and do the unsafe pointer operations on the temporary.
rdar://93677524
By using the keyword instead of the function, we actually get a much simpler
implementation since we avoid all of the machinery of SILGenApply. Given that we
are going down that path, I am removing the old builtin implementation since it
is dead code.
The reason why I am removing this now is that in a subsequent commit, I want to
move all of the ownership checking passes to run /before/ mandatory inlining. I
originally placed the passes after mandatory inlining since the function version
of the move keyword was transparent and needing to be inlined before we could
process it. Since we use the keyword now, that is no longer an issue.
Provides a list of instructions, which reference a function.
A function "use" is an instruction in another (or the same) function which references the function.
In most cases those are `function_ref` instructions, but can also be e.g. `keypath` instructions.
'FunctionUses' performs an analysis of all functions in the module and collects instructions which reference other functions.
This utility can be used to do inter-procedural caller-analysis.
To add a module pass in `Passes.def` use the new `SWIFT_MODULE_PASS` macro.
On the swift side, create a `ModulePass`.
It’s run function receives a `ModulePassContext`, which provides access to all functions of a module.
But it doesn't provide any APIs to modify functions.
In order to modify a function, a module pass must use `ModulePassContext.transform(function:)`.
TargetConstantFolding performs constant folding for target-specific values:
```
MemoryLayout<S>.size
MemoryLayout<S>.alignment
MemoryLayout<S>.stride
```
Constant folding those expressions in the middle of the SIL pipeline enables other optimizations to e.g. allow such expressions in statically allocated global variables (done by the GlobalOpt pass).
The implementation requires to create a temporary IRGenModule, which is used to get actual constant sizes/alignments from IRGen's type lowering.
rdar://94831524
This pass lowers moveonly-ness from the IR after we have finished move only
checking. The transform can be configured in two ways: such that it only handles
trivial types and such that it does trivial and non-trivial types. For ease of
use, I created two top level transforms (TrivialMoveOnlyTypeEliminator and
MoveOnlyTypeElimintor) that invoke the two behaviors by configuring the
underlying transform slightly differently.
For now, I am running first the trivial-only and then the all of the above
lowering. The trivial only pass will remain at this part of the pipeline
forever, but with time we are going to move the lower everything pass later into
the pipeline once I have audited the optimizer pipeline to just not perform any
work on move only types. That being said, currently we do not have this
guarantee and this patch at least improves the world and lets us codegen no
implicit copy code again.
Removes redundant ObjectiveC <-> Swift bridging calls.
Basically, if a value is bridged from ObjectiveC to Swift an then back to ObjectiveC again, then just re-use the original ObjectiveC value.
Also in this commit: add an additional DCE pass before ownership elimination. It can cleanup dead code which is left behind by the ObjCBridgingOptimization.
rdar://89987440
The overall flow of the pass is:
1. We walk over the blocks summarizing the debug info instruction the blocks gen
as well as whether or not the block had an async funclet edge with in it.
2. We then perform a simple forward iterative optimistic dataflow using
intersection at merge points. At points where we find after merging that we have
a conflict and thus need to stop propagation, we insert a debug_value undef.
3. We then walk the CFG again visiting only blocks that we know had async
funclet edges. We then walk each said block from top to bottom starting with the
propagating gen information and updating as we go, dumping the current set of
debug_info we are tracking after each coroutine funclet boundary.
rdar://85020571
The ComputeEffects pass derives escape information for function arguments and adds those effects in the function.
This needs a lot of changes in check-lines in the tests, because the effects are printed in SIL
This will turn `partial_apply` instructions into explicit box construction and
extraction code sequences. To begin with, recognize when a private function
is only used in partial applications and directly modify the function to be
usable as a closure invocation function. This simplifies the lowering in IRGen
and avoids generating a "partial application forwarder" thunk.
The ComputeEffects pass derives escape information for function arguments and adds those effects in the function.
This needs a lot of changes in check-lines in the tests, because the effects are printed in SIL
NOTE: debug_value [moved] appearing in the source code implies a _move was
used. So this will not effect current stable swift code.
This is just a first version of this that I am using to commit/bring up tests
for IRGen supporting a full dataflow version of this patch.
Big picture is that there is a bunch of work that is done in the LLVM level in
the coroutine splitter to work around communicating live variables in the
various coroutine func-lets. This logic is all done with debug.declare and we
would need to update that logic in the coroutine splitter to handle
debug.addr. Rather than do this, after some conversation, AdrianP and I realized
that we could get the same effect of a debug.declare by just redeclaring the
current live set of debug_value after each possible coroutine funclet start. To
do this in full generality, we need a full dataflow but just to bring this up we
initially perform a dominance propagation algorithm of the following sort:
1. We walk the CFG along successors. By doing this we guarantee that we visit
blocks after their dominators.
2. When we visit a block, we walk the block from start->end. During this walk:
a. We grab a new block state from the centralized block->blockState map. This
state is a [SILDebugVariable : DebugValueInst].
b. If we see a debug_value, we map blockState[debug_value.getDbgVar()] =
debug_value. This ensures that when we get to the bottom of the block, we
have pairs of SILDebugVariable + last debug_value on it.
c. If we see any coroutine funclet boundaries, we clone the current tracked
set of our block state and then walk up the dom tree dumping in each block
any debug_value with a SILDebugVariable that we have not already
dumped. This is maintained by using a visited set of SILDebugVariable for
each funclet boundary.
The end result is that at the beginning of each funclet we will basically
declare the debug info for an addr.
This is insufficient of course for moves that are in conditional control flow,
e.x.:
```
let x = Klass()
if boolValue {
await asyncCall()
let _ = _move(x)
}
```
but this at least lets me begin to write tests for this in lldb using straight
line code and work out the rest of the issues in CodeGen using those tests.
Flow-isolation is a diagnostic SIL pass that finds
unsafe accesses to properties in initializers and
deinitializers that cannot gain isolation to otherwise
protect those accesses from concurrent modifications.
See SE-327 for more details about how and why it exists.
This commit includes changes and features like:
- The removal of the escaping-use restriction
- Flow-isolation that works properly with `defer` statements
- Flow-isolation with an emphasis on helpful diagnostics.
It also includes known issues like:
- Local / nonescaping functions are not analyzed by
flow-isolation, despite it being technically possible.
The main challenge in supporting it efficiently is that
such functions do not have a single exit-point, like
a `defer`. In particular, arbitrary functions can throw
so there are points where nonisolation should _not_ flow
out of the function at a call-site in the initializer, etc.
- The implementation of the flow-isolation pass is not
particularly memory efficient; it relies on BitDataflow
even though the particular flow problem is simple.
So, a more efficient implementation would be specialized for
this particular problem, etc.
There are also some changes to the Swift language itself: defer
will respect its context when deciding its property access kind.
Previously, a defer in an initializer would always access a stored
property through its accessor methods, instead of doing so directly
like its enclosing function might. This inconsistency is unfortunate,
so for Swift 6+ we make this consistent. For Swift 5, only a defer
in a function that is a member of the following kinds of types
will gain this consistency:
- an actor type
- any nominal type that is actor-isolated, excluding UnsafeGlobalActor.
These types are still rather new, so there is much less of a chance of
breaking expected behaviors around defer. In particular, the danger is
that users are relying on the behavior of defer triggering a property
observer within an init or deinit, when it would not be triggering it
without the defer.
The `run-unit-tests` is a "pseudo" pass which is invoked from sil-opt and runs all the unit tests, implemented in Swift.
This is done from the `swift-unit-tests.sil` lit test.
Extract and rewrite the destroy hoisting algorithm originally from
CopyForwarding (in 2014).
This is now a light-weight utility for hoisting destroy_addr
instructions. Shrinking an object's memory lifetime can allow removal
of copy_addr and other optimization.
This is extremely low-overhead and can run at any optimization level
without dependency on any analysis.
This algorithm is:
- Incremental
- SSA-based
- Canonical
- Free from alias analysis
See file-level comments.
The immediate purpose is to specify and test the constraints
introduced by adding lexical variable lifetimes to SIL semantics. It
can be used as a template for end_borrow hoisting.
Ultimately, this utility can be invoked within any pass that needs to
optimize a particular uniquely identified address. It will be used to
remove much of the complexity from CopyForwarding.
* rename the CrossModuleSerializationSetup pass to simply CrossModuleOptimization
* remove the CMO specific serializer pass. Instead run the CrossModuleSerializationSetup pass directly before the standard serializer pass.
* correctly handle shared functions (e.g. specializations)
* refactoring
To give a bit more information, currently the way the move function is
implemented is that:
1. SILGen emits a builtin "move" that is called within the function _move in the
stdlib.
2. Mandatory Inlining today if the final inlined type is address only, inlines
builtin "move" as mark_unresolved_move_addr. Otherwise, if the inlined type
is loadable, it performs a load [take] + move [diagnostic] + store [init].
3. In the diagnostic pipeline before any mem optimizations have run, we run the
move checker for addresses. This eliminates /all/ mark_unresolved_move_addr
as part of emitting diagnostics. In order to make this work, we perform a
small optimization before the checker runs that moves the
mark_unresolved_move_addr from being on temporary alloc_stacks to the true
base underlying address we are trying to move. This optimization is necessary
since _move is generic and often times SILGen will emit this temporary that
we do not want.
4. Then after we have run the guaranteed mem optimizations, we run the object
based move checker emitting diagnostics.
This PR changes the scheme above to the following:
1. SILGen emits a builtin "move" that is called within the function _move in the
stdlib.
2. Mandatory Inlining inlines builtin "move" as mark_unresolved_move_addr.
3. In the diagnostic pipeline before we have run any mem optimizations and
before we have run the actual move address checker, we massage the IR as we
do above but in a separate pass where in addition we try to match this pattern:
```
%temporary = alloc_stack $LoadableType
store %1 to [init] %temporary : $*LoadableType
mark_unresolved_move_addr %temporary to %otherAddr : $*LoadableType
destroy_addr %temporary : $*LoadableType
```
and transform it to:
```
%temporary = alloc_stack $LoadableType
%2 = move_value [allows_diagnostics] %1 : $*LoadableType
store %2 to [init] %temporary : $*LoadableType
destroy_addr %temporary : $*LoadableType
```
ensuring that the object move checker will handle this.
4. Then after we have run the guaranteed mem optimizations, we run the object
based move checker emitting diagnostics.
* Replace the uniqueness result of a begin_cow_mutation of an empty Array/Set/Dictionary singleton with zero.
* Remove empty begin_cow_mutation - end_cow_mutation pairs
* Remove empty end_cow_mutation - begin_cow_mutation pairs
NOTE: This pass is disabled when -enable-experimental-lexical-lifetimes is
enabled.
When that flag is disabled, this removes the lexical flag from begin_borrow and
alloc_stack. This ensures that we can begin using begin_borrow [lexical] and
friends to emit diagnostics without impacting performance. I am going to be
preparing a subsequent patch that causes us to emit lexical lifetimes by
default. Due to this pass, I am not expecting any issues around perf.
This is just an initial prototype for people to play with. It is as always
behind the -enable-experimental-move-only flag.
NOTE: In this PR I implemented this only for 'local let' like things (local
lets/params). I did not implement in this PR support for local var and haven't
done anything with class ivars or globals.
rdar://83957028
NOTE: This is only available when the flag -enable-experimental-move-only. There
are no effects when the flag is disabled.
The way that this works is that it takes advantage of the following changes to
SILGen emission:
* When SILGen initializes a let with NoImplicitCopyAttribute, SILGen now emits
a begin_borrow [lexical] + copy + move_only. This is a pattern that we can check
and know that we are processing a move only value. When performing move
checking, we check move_only as a move only value and that it isn't consumed
multiple times.
* The first point works well for emitting all diagnostics except for
initializing an additional let var. To work around that I changed let
initialization to always bind to an owned value to a move of that owned
value. There is no semantic difference since that value is going to be consumed
by the binding operation anyways so we effectively just move the cleanup from
the original value we wanted to bind to the move. We still then actually borrow
the new let value with a begin_borrow [lexical] for the new let value. This
ensures that an initialization of a let value appears to be a consuming use to
the move only value checker while ensuring that the value has a proper
begin_borrow [lexical].
Some notes on functionality:
1. This attribute can only be applied to local 'let'.
2. "print" due to how we call it today with a vararg array is treated as a
consuming use (unfortunately).
3. I have not added the builtin copy operator yet, but I recently added a _move
skeleton attribute so one can end the lifetimes of these values early.
4. This supports all types that are not address only types (similar to
_move). To support full on address only types we need opaque values.
rdar://83957088
The PerformanceDiagnostics pass issues performance diagnostics for functions which are annotated with performance annotations, like @_noLocks, @_noAllocation.
This is done recursively for all functions which are called from performance-annotated functions.
rdar://83882635