This bare-bones utility will be the basis for
CanonicalizeOSSALifetime. It is maximally flexible and can be adopted
by any analysis that needs SSA-based liveness expressed in terms of
the live blocks. It's meant to be layered underneath various
higher-level analyses.
We could consider revamping ValueLifetimeAnalysis and layering it on
top of this. If PrunedLiveness is adopted widely enough, we can
combine it with a block numbering analysis so we can micro-optimize
the internal data structures.
This is a generic API that when ownership is enabled allows one to replace all
uses of a value with a value with a differing ownership by transforming/lifetime
extending as appropriate.
This API supports all pairings of ownership /except/ replacing a value with
OwnershipKind::None with a value without OwnershipKind::None. This is a more
complex optimization that we do not support today. As a result, we include on
our state struct a helper routine that callers can use to know if the two values
that they want to process can be handled by the algorithm.
My moticiation is to use this to to update InstSimplify and SILCombiner in a
less bug prone way rather than just turn stuff off.
Noting that this transformation inserts ownership instructions, I have made sure
to test this API in two ways:
1. With Mandatory Combiner alone (to make sure it works period).
2. With Mandatory Combiner + Semantic ARC Opts to make sure that we can
eliminate the extra ownership instructions it inserts.
As one can see from the tests, the optimizer today is able to handle all of
these transforms except one conditional case where I need to eliminate a dead
phi arg. I have a separate branch that hits that today but I have exposed unsafe
behavior in ClosureLifetimeFixup that I need to fix first before I can land
that. I don't want that to stop this PR since I think the current low level ARC
optimizer may be able to help me here since this is a simple transform it does
all of the time.
If the specialized function has a re-abstracted (= converted from indirect to direct) resilient argument or return types, use an alternative mangling: "TB" instead of "Tg".
Resilient parameters/returns can be converted from indirect to direct if the specialization is created within the type's resilience domain, i.e. in its module (where the type is loadable).
In this case we need to generate a different mangled name for the specialized function to distinguish it from specializations in other modules, which cannot re-abstract this resilient type.
This fixes a miscompile resulting from ODR-linking specializations from different modules, which in fact have different function signatures.
https://bugs.swift.org/browse/SR-13900
rdar://71914016
I reimplemented the original addNewEdgeValueToBranch to just call the new
overload with a default InstModCallbacks, so nothing changed and now we can plug
in callbacks to this utility!
Otherwise, one is always forced to use ValueLifetimeAnalysis::Frontier, a
SmallVector<SILInstruction *, 4>. This may not be a size appropriate for every
problem, so it makes sense to provide Frontier as a good rule of thumb, but use
FrontierImpl on the actual API boundary to loosen the constraint if the user
wishes to do so.
to check for improperly nested '@_semantic' functions.
Add a missing @_semantics("array.init") in ArraySlice found by the
diagnostic.
Distinguish between array.init and array.init.empty.
Categorize the types of semantic functions by how they affect the
inliner and pass pipeline, and centralize this logic in
PerformanceInlinerUtils. The ultimate goal is to prevent inlining of
"Fundamental" @_semantics calls and @_effects calls until the late
pipeline where we can safely discard semantics. However, that requires
significant pipeline changes.
In the meantime, this change prevents the situation from getting worse
and makes the intention clear. However, it has no significant effect
on the pass pipeline and inliner.
...and avoid reallocation.
This is immediately necessary for LICM, in addition to its current
uses. I suspect this could be used by many passes that work with
addresses. RLE/DSE should absolutely migrate to it.
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
* Fix another use-after-free in SILCombine
swift::endLifetimeAtFrontier also needs to use
swift::emitDestroyOperation and delete instructions via callbacks that
can correctly remove it from the worklist that SILCombine maintains
* Add test for use-after-free in SILCombine
SILCombine maintains a worklist of instructions and deleting of instructions is valid only via callbacks that remove them from the worklist as well. It calls swift::tryDeleteDeadClosure which in turn calls SILBuilder apis like emitStrongRelease/emitReleaseValue/emitDestroyValue which can delete instructions via SILInstruction::eraseFromParent leaving behind a stale entry in SILCombine's worklist causing a crash.
This PR adds swift::emitDestroyOperation which correctly calls the appropriate InstModCallbacks on added/removed instructions. This comes from swift::releasePartialApplyCapturedArg which was handling creation of destroys with callbacks correctly.
`get_async_continuation[_addr]` begins a suspend operation by accessing the continuation value that can resume
the task, which can then be used in a callback or event handler before executing `await_async_continuation` to
suspend the task.
LLVM, as of 77e0e9e17daf0865620abcd41f692ab0642367c4, now builds with
-Wsuggest-override. Let's clean up the swift sources rather than disable
the warning locally.
TLDR: This fixes an ownership verifier assert caused by not placing end_borrows
along paths where an enum is provable to have a trivial case. It only happens if
all non-trivial cases in a switch_enum are "dead end blocks" where the program
will end and we leak objects.
The Problem
-----------
The actual bug here only occurs in cases where we have a switch_enum on an enum
with mixed trivial, non-trivial cases and all of the non-trivial payloaded cases
are "dead end blocks". As an example, lets look at a simple switch_enum over an
optional where the .some case is a dead end block and we leak the Klass object
into program termination:
```
%0 = load [copy] %mem : $Klass
switch_enum %0 : $Optional<Klass>, case #Optional.some: bbDeadEnd, case #Optional.none: bbContinue
bbDeadEnd(%0a : @owned $Klass): // %0 is leaked into program end!
unreachable
bbContinue:
... // program continue.
```
In this case, if we were only looking at final destroying uses, we would pass a
def without any uses to the ValueLifetimeChecker causing us to not have a
frontier at all causing us to not insert any end_borrows, yielding:
```
%0 = load_borrow %mem : $Klass
switch_enum %0 : $Optional<Klass>, case #Optional.some: bbDeadEnd, case #Optional.none: bbContinue
bbDeadEnd(%0a : @guaranteed $Klass): // %0 is leaked into program end and
// doesnt need an end_borrow!
unreachable
bbContinue:
... // program continue... we need an end_borrow here though!
```
This then trips the ownership verifier since switch_enum is a transforming
terminator that acts like a forwarding instruction implying we need an
end_borrow on the base value along all non-dead end paths through the program.
Importantly this is not actually a leak of a value or unsafe behavior since the
only time that we enter into unsafe territory is along paths where the enum was
actually trivial. So the load_borrow is actually just loaded the trivial enum
value.
The Fix
-------
In order to work around this, I realized that the right solution is to also
include the forwarding consuming uses (in this case the switch_enum use) when
determining the lifetime and that this solves the problem.
That being said, after I made that change, I noticed that I needed to remove my
previous manner of computing the insertion point to use for arguments when
finding the lifetime using ValueLifetimeAnalysis. Previously since I was using
only the destroying uses I knew that the destroy_value could not be the first
instruction in the block of my argument since I handled that case individually
before using the ValueLifetimeAnalysis. That invariant is no longer true as can
be seen in the case above if %0 was from a SILArgument itself instead of a load
[copy] and we were converting that argument to be a guaranteed argument.
To fix this, I taught ValueLifetimeAnalysis how to handle defs from
Arguments. The key thing is I noticed while reading the code that the analysis
only generally cared about the instruction's parent block. Beyond that, the def
being from an instruction was only needed to determine if a user is earlier in
the same block as the def instruction. Those concerns not apply to SILArgument
which dominate all instructions in the same block, so in this patch, we just
skip those conditional checks when we have a SILArgument. The rest of the code
that uses the parent block is the same for both SILArgument/SILInstructions.
rdar://65244617
Specifically:
1. I made methods, variables camelCase.
2. I expanded out variable names (e.x.: bb -> block, predBB -> predBlocks, U -> wrappedUse).
3. I changed typedef -> using.
4. I changed a few c style for loops into for each loops using llvm::enumerate.
NOTE: I left the parts needed for syncing to LLVM in the old style since LLVM
needs these to exist for CRTP to work correctly for the SILSSAUpdater.
Optimize the unconditional_checked_cast_addr in this pattern:
%box = alloc_existential_box $Error, $ConcreteError
%a = project_existential_box $ConcreteError in %b : $Error
store %value to %a : $*ConcreteError
%err = alloc_stack $Error
store %box to %err : $*Error
%dest = alloc_stack $ConcreteError
unconditional_checked_cast_addr Error in %err : $*Error to ConcreteError in %dest : $*ConcreteError
to:
...
retain_value %value : $ConcreteError
destroy_addr %err : $*Error
store %value to %dest $*ConcreteError
This lets the alloc_existential_box become dead and it can be removed in following optimizations.
The same optimization is also done for conditional_checked_cast_addr.
There is also an implication for debugging:
Each "throw" in the code calls the runtime function swift_willThrow. The function is used by the debugger to set a breakpoint and also add hooks.
This optimization can completely eliminate a "throw", including the runtime call.
So, with optimized code, the user might not see the program to break at a throw, whereas in the source code it is actually throwing.
On the other hand, eliminating the existential box is a significant performance win and we don't guarantee any debugging behavior for optimized code anyway. So I think this is a reasonable trade-off.
I added an option "-Xllvm -keep-will-throw-call" to keep the runtime call which can be used if someone want's to reliably break on "throw" in optimized builds.
rdar://problem/66055678
Since libDemangling is included in the Swift standard library,
ODR violations can occur on platforms that allow statically
linking stdlib if Swift code is linked with other compiler
libraries that also transitively pull in libDemangling, and if
the stdlib version and compiler version do not match exactly
(even down to commit drift between releases). This lets the
runtime conditionally segregate its copies of the libDemangling
symbols from those in the compiler using an inline namespace
without affecting usage throughout source.
Move differentiation-related SILOptimizer files to
{include/swift,lib}/SILOptimizer/Differentiation/.
This reduces directory nesting and gathers files together.
* Update Devirtualizer's analysis invalidation
castValueToABICompatibleType can change CFG, Devirtualizer uses this api but doesn't check if it modified the cfg
MSVC does not realize that the switch is exhaustive and requires that
the path is explicitly marked as unreachable. This silences the C4715
warning ("not all control paths return a value").
I am going to use this in mandatory combine, and it seems like a generally
useful transformation.
I also updated the routine to construct its own SILBuilder that injects a user
passed in SILBuilderContext eliminating the bad pattern of passing in
SILBuilders.
This should be an NFC change.
Make `SynthesizedFileUnit` attached to a `SourceFile`. This seemed like the
least ad-hoc approach to avoid doing unnecessary work for other `FileUnit`s.
TBDGen: when visiting a `SourceFile`, also visit its `SynthesizedFileUnit` if
it exists.
Serialization: do not treat `SynthesizedFileUnit` declarations as xrefs when
serializing the companion `SourceFile`.
Resolves TF-1239: AutoDiff test failures.
JVP functions are forward-mode derivative functions. They take original
arguments and return original results and a differential function. Differential
functions take derivatives wrt arguments and return derivatives wrt results.
`JVPEmitter` is a cloner that emits JVP and differential functions at the same
time. In JVP functions, function applications are replaced with JVP function
applications. In differential functions, function applications are replaced
with differential function applications.
In JVP functions, each basic block takes a differential struct containing callee
differentials. These structs are consumed by differential functions.
Make `ADContext` lazily create a `SynthesizedFileUnit` instead of creating one
during `ADContext` construction. This avoids always creating a
`SynthesizedFileUnit` in every module, since differentiation is a mandatory
transform that always runs.
It was nonetheless useful to test always creating a `SynthesizedFileUnit` for
testing purposes.
Add implicit declarations generated by the differentiation transform to a
`SynthesizedFileUnit` instead of an ad-hoc pre-existing `SourceFile`.
Resolves TF-1232: type reconstruction for AutoDiff-generated declarations.
Previously, type reconstruction failed because retroactively adding declarations
to a `SourceFile` did not update name lookup caches.