It is now possible to check for any apply if it can be devirtualized without actually performing the deirtualization. This could be used e.g. by inlining heuristics.
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
Names matter. When using an unsigned int to index arguments, always make it
clear what the index refers to. It is a particularly confusing in this code because:
- mangling should not care about argument indices at all, only the function type should matter.
- argument indices for a given function type may be different depending on the SIL stage.
- these indices are actually a contract between the client code and the mangler.
- the specialized function's argument indices are different than the original indices!
This issue was hiding bugs in the mangler. The bug fixes will be in a separate PR.
We preserve the current behavior of assuming Any ownership always and use
default arguments to hide this change most of the time. There are asserts now in
the SILBasicBlock::{create,replace,insert}{PHI,Function}Argument to ensure that
the people can only create SILFunctionArguments in entry blocks and
SILPHIArguments in non-entry blocks. This will ensure that the code in tree
maintains the API distinction even if we are not using the full distinction in
between the two.
Once the verifier is finished being upstreamed, I am going to audit the
createPHIArgument cases for the proper ownership. This is b/c I will be able to
use the verifier to properly debug the code. At that point, I will also start
serializing/printing/parsing the ownershipkind of SILPHIArguments, but lets take
things one step at a time and move incrementally.
In the process, I also discovered a CSE bug. I am not sure how it ever worked.
Basically we replace an argument with a new argument type but return the uses of
the old argument to refer to the old argument instead of a new argument.
rdar://29671437
For a long time, we have:
1. Created methods on SILArgument that only work on either function arguments or
block arguments.
2. Created code paths in the compiler that only allow for "function"
SILArguments or "block" SILArguments.
This commit refactors SILArgument into two subclasses, SILPHIArgument and
SILFunctionArgument, separates the function and block APIs onto the subclasses
(leaving the common APIs on SILArgument). It also goes through and changes all
places in the compiler that conditionalize on one of the forms of SILArgument to
just use the relevant subclass. This is made easier by the relevant APIs not
being on SILArgument anymore. If you take a quick look through you will see that
the API now expresses a lot more of its intention.
The reason why I am performing this refactoring now is that SILFunctionArguments
have a ValueOwnershipKind defined by the given function's signature. On the
other hand, SILBlockArguments have a stored ValueOwnershipKind. Rather than
store ValueOwnershipKind in both instances and in the function case have a dead
variable, I decided to just bite the bullet and fix this.
rdar://29671437
Following classes provide symbol mangling for specific purposes:
*) Mangler: the base mangler class, just providing some basic utilities
*) ASTMangler: for mangling AST declarations
*) SpecializationMangler: to be used in the optimizer for mangling specialized function names
*) IRGenMangler: mangling all kind of symbols in IRGen
All those classes are not used yet, so it’s basically a NFC.
Another change is that some demangler node types are added (either because they were missing or the new demangler needs them).
Those new nodes also need to be handled in the old demangler, but this should also be a NFC as those nodes are not created by the old demangler.
My plan is to keep the old and new mangling implementation in parallel for some time. After that we can remove the old mangler.
Currently the new implementation is scoped in the NewMangling namespace. This namespace should be renamed after the old mangler is removed.
This was already done for getSuccessorBlocks() to distinguish getting successor
blocks from getting the full list of SILSuccessors via getSuccessors(). This
commit just makes all of the successor/predecessor code follow that naming
convention.
Some examples:
getSingleSuccessor() => getSingleSuccessorBlock().
isSuccessor() => isSuccessorBlock().
getPreds() => getPredecessorBlocks().
Really, IMO, we should consider renaming SILSuccessor to a more verbose name so
that it is clear that it is more of an internal detail of SILBasicBlock's
implementation rather than something that one should consider as apart of one's
mental model of the IR when one really wants to be thinking about predecessor
and successor blocks. But that is not what this commit is trying to change, it
is just trying to eliminate a bit of technical debt by making the naming
conventions here consistent.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
This eliminates all inline creation of SILBasicBlock via placement new.
There are a few reasons to do this:
1. A SILBasicBlock is always created with a parent function. This commit
formalizes this into the SILBasicBlock API by only allowing for SILFunctions to
create SILBasicBlocks. This is implemented via the type system by making all
SILBasicBlock constructors private. Since SILFunction is a friend of
SILBasicBlock, SILFunction can still create a SILBasicBlock without issue.
2. Since all SILBasicBlocks will be created in only a few functions, it becomes
very easy to determine using instruments the amount of memory being allocated
for SILBasicBlocks by simply inverting the call tree in Allocations.
With LTO+PGO, normal inlining can occur if profitable so there shouldn't be
overhead that we care about in shipping compilers.
- Move the common performance inliner functionality into PerformanceInlinerUtils.cpp.
- Move the functionality specific to non-generic inlining into NonGenericPerformanceInliner.cpp
- Temporarily disable the inlining of generics. It will be enabled in the subsequent commit.
When applying substitutions to substitution lists in SIL, we would
unpack the ArrayRef<Substitution> into a SubstitutionMap on each
iteration over the original ArrayRef<Substitution>. Discourage
this sort of thing by removing the API in question and refactoring
surrounding code.
- Look through BB arguments with multiple predecessors.
- Provide a new helper function to figure out the exact type of the underlying object. It will be used by subsequent commits to improve the escape analysis.
This could happen in case the argument type is an enum and if one of the enum payloads has multiple non-trivial fields and only one of the values is released before the return.
This establishes a real def-use relation from the self-parameter to any instruction which uses the dynamic-self type.
This is an addition to what was already done for opened archetypes.
The biggest part of this commit is to rename "OpenedArchetypeOperands" to "TypeDependentOperands" as this name is now more appropriate.
Other than that the change includes:
*) type-dependent operands are now printed after a SIL instruction in a comment as "type-defs:" (for debugging)
*) FuncationSignatureOpts doesn't need to explicitly check if a function doesn't bind dynamic self to remove a dead self metadata argument
*) the check if a function binds dynamic self (used in the inliner) is much simpler now
*) also collect type-dependent operands for ApplyInstBase::SubstCalleeType and not only in the substitution list
*) with this SILInstruction::mayHaveOpenedArchetypeOperands (used in CSE) is not needed anymore and removed
*) add type dependent operands to dynamic_method instruction
Regarding the generated code it should be a NFC.
*) cast optimizer: when a bridging cast is replaced with a function call and the owning convention of the instruction and the call parameter do not match, compensating retain/release instructions must be inserted.
*) cast optimizer: when a consuming dead cast instruction is removed a compensating release instruction must be inserted
*) mem2reg: An alloc_stack location which contains a destroy_addr must not be considered as a write-only location. The destroy_addr must be preserved.
rdar://problem/27601057
Some modifications for the ms-extension option of the clang.exe in the Visual Studio 2015 development environment
This patch is only for swiftc.exe. I used the library set of Visual Studio 2015 Update 1 and recent version of swift-clang as the compiler. If you are using the real MSVC compiler, more patch might be required.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
Till now there was no way in SIL to explicitly express a dependency of an instruction on any opened archetypes used by it. This was a cause of many errors and correctness issues. In many cases the code was moved around without taking into account these dependencies, which resulted in breaking the invariant that any uses of an opened archetype should be dominated by the definition of this archetype.
This patch does the following:
- Map opened archetypes to the instructions defining them, i.e. to open_existential instructions.
- Introduce a helper class SILOpenedArchetypesTracker for creating and maintaining such mappings.
- Introduce a helper class SILOpenedArchetypesState for providing a read-only API for looking up available opened archetypes.
- Each SIL instruction which uses an opened archetype as a type gets an additional opened archetype operand representing a dependency of the instruction on this archetype. These opened archetypes operands are an in-memory representation. They are not serialized. Instead, they are re-constructed when reading binary or textual SIL files.
- SILVerifier was extended to conduct more thorough checks related to the usage of opened archetypes.
replaced by retain release code motion. This code has been disabled for sometime now.
This should bring the retain release code motion into a close. The retain release
code motion pipeline looks like this. There could be some minor cleanups after this though.
1. We perform a global data flow for retain release code motion in RRCM (RetainReleaseCodeMotion)
2. We perform a local form of retain release code motion in SILCodeMotion. This is more
for cases which can not be handled in RRCM. e.g. sinking into a switch is more efficiently
done in a local form, the retain is not needed on the None block. Release on SILArgument needs
to be split to incoming values, this can not be done in RRCM and other cases.
3. We do not perform code motion in ASO, only elimination which are very important.
Some modifications to test cases, they look different, but functionally the same.
RRCM has this canonicalization effect, i.e. it uses the rc root, instead of
the SSA value the retain/release is currently using. As a result some test cases need
to be modified.
I also removed some test cases that do not make sense anymore and lot of duplicate test
cases between earlycodemotion.sil and latecodemotion.sil. These tests cases only have retains
and should be used to test early code motion.