I am doing this since I discovered that we are not printing certain errors as
early as we used to (due to the refactoring I did here), which makes it harder
to see the errors that we are emitting while processing individual instructions
and before we run the actual dataflow.
A nice side-effect of this is that it will make it easy to dump the error in the
debugger rather than having to wait until the point in the code where the normal
logging takes place.
This makes it so that one does not need to deal with the differences in text in
between the task isolated case and the actor isolated case. This is done by
swallowing the entire part of this message in one method rather than having the
caller do the work.
This is going to let me just pass through the error struct to the diagnostic
rather than having the CRTP and then constructing an info object per CRTP.
Currently, to make it easier to refactor, I changed the code in
TransferNonSendable to just take in the new error and call the current CRTP
routines. In the next commit, I am going to refactor TransferNonSendable.cpp
itself. This just makes it easier to test that I did not break anything.
In Embedded Swift, witness method lookup is done from specialized witness tables.
For this to work, the type of witness_method must be specialized as well.
Otherwise the method call would be done with wrong parameter conventions (indirect instead of direct).
MandatoryPerformanceOptimizations already did most of the vtable specialization work.
So it makes sense to remove the VTableSpecializerPass completely and do everything in MandatoryPerformanceOptimizations.
The reason why is that we want to distinguish inbetween SILFunction's that are
marked as unspecified by SILGen and those that are parsed from textual SIL that
do not have any specified isolation. This will make it easier to write nice
FileCheck tests against SILGen output on what is the inferred isolation for
various items.
NFCI.
This only occurs specifically for async nonisolated functions with an isolated
parameter that passes a disconnected value in its body off to a nonisolated
async function as a sending parameter.
rdar://134409359
The old analysis pass doesn't take into account profile data, nor does
it consider post-dominance. It primarily dealt with _fastPath/_slowPath.
A block that is dominated by a cold block is itself cold. That's true
whether it's forwards or backwards dominance.
We can also consider a call to any `Never` returning function as a
cold-exit, though the block(s) leading up to that call may be executed
frequently because of concurrency. For now, I'm ignoring the concurrency
case and assuming it's cold. To make use of this "no return" prediction,
use the `-enable-noreturn-prediction` flag, which is currently off by
default.
If there is no read from an indirect argument, this argument has to be dropped.
At the call site the store to the argument's memory location could have been removed (based on the callee's memory effects).
Therefore, converting such an unused indirect argument to a direct argument, would load an uninitialized value at the call site.
This would lead to verifier errors and in worst case to a miscompile because IRGen can implicitly use dead arguments, e.g. for getting the type of a class reference.
Instead of adding a "flag" (`m` in `...Tgm5`) make it more generic to allow to drop any unused argument.
Add all dropped arguments with a `t<n-1>` (where `<n-1>` is empty for n === 0). For example `...Ttt2g5`.
These do not specifically have to do with PartitionUtils... they are really
logging options for the whole infrastructure, so it makes sense to have them in
the a different file.
Specifically:
I changed the main error message to focus on the closure and that the closure
is being accessed concurrently.
If we find that we captured a value that is the actual isolation source, we
emit that the capture is actually actor isolated.
If the captured value is in the same region as the isolated value but is not
isolated, we instead say that the value is accessible from *-isolated code or
code within the current task.
If we find multiple captures and we do not which is the actual value that was
in the same region before we formed the partial apply, we just emit a note on
the captures saying that the closure captures the value.
I changed the diagnostics from using the phrase "task-isolated" to use some
variant of accessible to code in the current task.
The idea is that in all situations we provide a breadcrumb that the user can
start investigating rather than just saying that the closure is "task-isolated".
From a preconcurrency perspective, I made it so that we apply the preconcurrency
behavior of all of the captures. This means that if one of the captures is
preconcurrency, we apply the preconcurrency restriction to the closure. This is
one step towards making it so that preconcurrency applies at the region level...
we just are not completely there yet.
rdar://133798044
CONTEXT: This code works by building up a stack of SIL values of values that
need to be transformed into a StringRef as part of generating our name path and
then as a second phase performs the conversion of those values to StringRef as
we pop from the stack.
This is the first in a string of commits that are going to refactor
VariableNameUtils so that the stack will only contain StringRef instead of SIL
entities. This will be accomplished by moving the SIL value -> StringRef code
from the combining part of the algorithm (where we drain the stack) to the
construction of the stack.
The reason why I am doing this is two fold:
1. By just storing StringRef into the stack I am simplifying the code. Today as
mentioned above in the context, we gather up the SILValue we want to process and
then just convert them to StringRef. This means that any time one has to add a
new instruction, one has to update two different pieces of code. By trafficking
in StringRef instead, one only has to update one piece of code.
2. I want to add some simple code that allows for us to get names from closures
which would require me to recurse. I am nervous about putting
values/instructions from different functions in the same data structure. Today
it is safe, but it is bad practice. Instead, by just using StringRef in the
stack, I can avoid this problem.
The reason that I am changing this code is that getWithIsolationCrossing is a
bad API that was being used to infer actor isolation straight from an ApplyExpr
without adding an actor instance. This can cause us to reject programs
unnecessarily if we in other parts of the code correctly infer the SILValue
actor instance for the isolation.
Rather than allow for that, I am removing this code and I improved the rest of
the pattern matching here to ensure that we handled that with the normal actor
instance inferring code. This will prevent this type of mismerge from happening
by mistake. I fixed up the changes in the test cases.
The only usage of this left is for ApplyIsolationCrossings parsed straight from
SIL that we use only when testing. This is safe since if a test writer is using
the parsed SIL in this manner, they can make sure that mismerges do not happen.
In this part of the code, we are attempting to merge all of the operands into
the same region and then assigning all non-Sendable results of the function to
that same region. The problem that was occuring here was a thinko due to the
control flow of the code here not separating nicely the case of whether or not
we had operands or not. Previously this did not matter, since we just used the
first result in such a case... but since we changed to assign to the first
operand element in some cases, it matters now. To fix this, I split the confused
logic into two different easy to follow control paths... one if we have operands
and one where we do not have an operand. In the case where we have a first
operand, we merge our elements into its region. If we do not have any operands,
then we just perform one large region assign fresh.
This was not exposed by code that used non-coroutines since in SIL only
coroutines today have multiple results.
rdar://132767643
Use the more precise areUsesWithinBoundary API (which takes dead-end
blocks into account). This requires first updating liveness with the
newly created destroys.
Just clear all structures in a single method which is called wherever
clearing is done. Fixes a failure to clear discoveredBlocks under
certain circumstances.
The unittests for PartitionUtils pass in mocked operands and instructions that
cannot be dereferenced. Adding this static CRTP helper allows for the unittest
PartitionOpEvaluator subclass to just return false for it instead of
dereferencing operands or instructions. The rest of the evaluators just get to
use the default "normal" implementation that actually accesses program state.