array.append_element(newElement: Element)
array.append_contentsOf(contentsOf newElements: S)
And allow early inlining of them.
Those functions will be needed to optimize Array.append(contentsOf)
Also, add a third [serializable] state for functions whose bodies we
*can* serialize, but only do so if they're referenced from another
serialized function.
This will be used for bodies synthesized for imported definitions,
such as init(rawValue:), etc, and various thunks, but for now this
change is NFC.
This is useful for optimizations (like AllocBoxToStack) which create (de-)alloc_stack instructions.
They can just insert the new instructions anywhere without worrying about nesting and correct the nesting afterwards.
Use -sil-partial-specialization-with-generic-substitutions to enable the partial specialization even in cases of substitutions containing generic replacement types.
There are now separate functions for function addition and deletion instead of InvalidationKind::Function.
Also, there is a new function for witness/vtable invalidations.
rdar://problem/29311657
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
Partial specialization is disabled by default. Use -sil-partial-specialization to enable it.
Use -sil-partial-specialization-with-generic-substitutions to enable the partial specialization even in cases of substitutions containing generic replacement types.
It looks like the devirtualizer used to have problems computing
method types in the presence of generic substitutions, covariant
returns and other things, so it would bail if a perticular set
of pre-conditions was not met on the types of original method call
and the devirtualized method call.
I don't think any of this is necessary anymore. If this patch
introduces any regressions, we need to fix the root cause instead
of re-introducing this logic.
It is important to de-serialize the devirtualized function (and its callees), especially because we must make sure that all transparent functions are de-serialized.
SILCombine did not do that. But as we have the same optimization in the Devirtualizer, it's not needed to duplicate the code in SILCombine.
The only reason we had this peephole in SILCombine is that the Devirtualizer pass could not handle partial applies.
So with this change the Devirtualizer can now also handle partial applies.
Fixes rdar://problem/30544344 (again, after my first attempt failed)
This predicate can be used to check if a given call can be devirtualized. One of the clients of this new API will be the inliner, which may want to check if a given method call becomes devirtualizable after inlining.
This reverts commit 1b3d29a163, reversing
changes made to b32424953e.
We're seeing a handful of issues from turning on inlining of generics,
so I'm reverting to unblock the bots.
It is now possible to check for any apply if it can be devirtualized without actually performing the deirtualization. This could be used e.g. by inlining heuristics.
There is already precedence for doing this via DominanceInfo. The reason I am
doing this is that I need the ownership verifier to be able to be run in Raw SIL
before no return folding has run. This means I need to be able to ignore
unreachable code resulting from SILGen not inserting unreachables after no
return functions.
The reason why SILGen does this is to preserve the source information of the
unreachable code so that we can emit nice errors about unreachable code.
rdar://29791263
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
Print the SIL function body on an assert. Recovering the SIL code is the
critical path for pretty much any SIL development. The only alternative is
rebuilding the library with string matching or building a debug compiler and
hoping lldb works. The standard library takes a very long time to build with a
debug compiler.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
Names matter. When using an unsigned int to index arguments, always make it
clear what the index refers to. It is a particularly confusing in this code because:
- mangling should not care about argument indices at all, only the function type should matter.
- argument indices for a given function type may be different depending on the SIL stage.
- these indices are actually a contract between the client code and the mangler.
- the specialized function's argument indices are different than the original indices!
This issue was hiding bugs in the mangler. The bug fixes will be in a separate PR.
Not sure why but this was another "toxic utility method".
Most of the usages fell into one of three categories:
- The base value was always non-null, so we could just call
getCanonicalType() instead, making intent more explicit
- The result was being compared for equality, so we could
skip canonicalization and call isEqual() instead, removing
some boilerplate
- Utterly insane code that made no sense
There were only a couple of legitimate uses, and even there
open-coding the conditional null check made the code clearer.
Also while I'm at it, make the SIL open archetypes tracker
more typesafe by passing around ArchetypeType * instead of
Type and CanType.