As an example of the change:
- // expected-note @-1 {{'x' is transferred from nonisolated caller to main actor-isolated callee. Later uses in caller could race with potential uses in callee}}
+ // expected-note @-1 {{transferring disconnected 'x' to main actor-isolated callee could cause races in between callee main actor-isolated and local nonisolated uses}}
Part of the reason I am doing this is that I am going to be ensuring that we
handle a bunch more cases and I wanted to fix this diagnostic before I added
more incaranations of it to the tests.
I am making this specific API since I am going to make it so that
SILIsolationInfo::get(SILInstruction *) can infer isolation info from self even
from functions that are not apply isolation crossing points. For example, in the
following, we need to understand that test is main actor isolated and we
shouldn't emit an error.
```swift
@MainActor func test(_ x: NonSendable) {}
@OtherActor func doSomething() {
let x = NonSendable()
Task.init { @MainActor in print(x) }
test(x)
}
```
Long term I would like to get region analysis and transfer non sendable out of
the business of directly interpreting the AST... but if we have to do it now, I
would rather us do it through a helper struct. At least the helper struct can be
modified later to work with additional SIL concurrency support when it is added.
This is in preparation for beginning to track an IsolationRegionInfo in
TransferringOperand.
Just splitting this into a separate commit to make it easier to read.
I need to start tracking the dynamic IsolationRegionInfo for the transferring
operand so I can ignore uses that are part of the same
IsolationRegionInfo. IsolationRegionInfo doesn't fit into a pointer, so just to
keep things the same, I am going to just allocate it.
This is an initial staging commit that tests out the bump ptr allocating without
expanding the type yet.
* Let the customBits and lastInitializedBitfieldID share a single uint64_t. This increases the number of available bits in SILNode and Operand from 8 to 20. Also, it simplifies the Operand class because no PointerIntPairs are used anymore to store the operand pointer fields.
* Instead make the "deleted" flag a separate bool field in SILNode (instead of encoding it with the sign of lastInitializedBitfieldID). Another simplification
* Enable important invariant checks also in release builds by using `require` instead of `assert`. Not catching such errors in release builds would be a disaster.
* Let the Swift optimization passes use all the available bits and not only a fixed amount of 8 (SILNode) and 16 (SILBasicBlock).
Enable KeyPath/AnyKeyPath/PartialKeyPath/WritableKeyPath in Embedded Swift, but
for compile-time use only:
- Add keypath optimizations into the mandatory optimizations pipeline
- Allow keypath optimizations to look through begin_borrow, to make them work
even in OSSA.
- If a use of a KeyPath doesn't optimize away, diagnose in PerformanceDiagnostics
- Make UnsafePointer.pointer(to:) transparent to allow the keypath optimization
to happen in the callers of UnsafePointer.pointer(to:).
I also eliminated the very basic "why is this task isolated" part of the warning
in favor of the larger, better, region history impl that I am going to land
soon. The diagnostic wasn't that good in the first place and also was fiddly. So
I removed it for now.
rdar://124960994
I am going to need this so that I can use it when evaluating partition
ops. Specifically, so I can when I find two values that do not merge correctly,
emit an error.
We often look at the SIL output of -sil-print-function and may want to debug a specific pass
after looking at the output.
-sil-break-before-pass-count=<pass_number> will allow to automatically break in the debugger
after <pass_count> of passes are run.
Example:
From -sil-print-function dump:
"SIL function after #6680, stage MidLevel,Function, pass 38: RedundantLoadElimination"
-Xllvm -sil-break-before-pass-count=6680 will break before running this pass in the debugger
Now that we actually know the region that non transferrable things belong to, we
can use this information to give a better diagnostic here.
A really nice effect of this is that we now emit that actor isolated parameters
are actually actor isolated instead of task isolated.
In a subsequent commit, this is going to let me begin handling parameters with
actor regions in a nice way (and standardize all of the errors).
This is meant to be a refactoring commit that uses the current tests in tree to
make sure I did it correctly, so no tests need to be updated.
To keep this as an NFC commit, I only modeled initially actor isolated using
this. I am going to make it so that we properly treat global actor isolated
values as actor isolated/etc in a subsequent commit.
InstructionRange uses 3 sets. Some algorithms need two active ranges at the top-level. Additionally, utilities often have few levels of nesting that each require a block set.
When we run RegionAnalysis, since it uses RPO order, we do not visit dead
blocks. This can create a problem when we emit diagnostics since we may merge in
a value into the region that was never actually defined. In this patch, if we
actually visit the block while performing dataflow, I mark a bit in its state
saying that it was live. Then when we emit diagnostics, I do not visit blocks
that were not marked live.
rdar://124042351
[region-isolation] Refactor out the stubify dead function if no longer used functionality from move only checker into its own pass and put it before region based isolation.
I am doing this since region based isolation hit the same issue that the move
checker did. So it makes sense to refactor the functionality into its own pass
and move it into a helper pass that runs before both.
It is very conservative and only stubifies functions that the specialization
passes explicitly mark as this being ok to be done to.
A destroy_value of Optional.none can be deleted.
A move-only struct with deinit has a non trivial SILType but OwnershipKind::None,
such values cannot be deleted.
For years, optimizer engineers have been hitting a common bug caused by passes
assuming all SILValues have a parent function only to be surprised by SILUndef.
Generally we see SILUndef not that often so we see this come up later in
testing. This patch eliminates that problem by making SILUndef uniqued at the
function level instead of the module level. This ensures that it makes sense for
SILUndef to have a parent function, eliminating this possibility since we can
define an API to get its parent function.
rdar://123484595