* add `cloneFunctionBody` without an `entryBlockArguments` argument
* remove the `swift::ClosureSpecializationCloner` from the bridging code and replace it with a more general `SpecializationCloner`
Originally this was a "private" utility for the ClosureSpecialization pass.
Now, make it a general utility which can be used for all kind of function specializations.
OSSA lifetime canonicalization can take a very long time in certain
cases in which there are large basic blocks. to mitigate this, add logic
to skip walking the liveness boundary for extending liveness to dead
ends when there aren't any dead ends in the function.
Updates `DeadEndBlocks` with a new `isEmpty` method and cache to
determine if there are any dead-end blocks in a given function.
This patch changes RemoteAbsolutePointer to store both the symbol and
the resolved address. This allows us to retire some ugly workarounds
to deal with non-symbolic addresses and it fixes code paths that would
need these workarounds, but haven't implemented them yet (i.e., the
pack shape handling in the symbolicReferenceResolver in MetadatyaReader.
Addresses parts of rdar://146273066.
rdar://153687085
We want to be able to adopt
(https://github.com/swiftlang/swift/pull/82225) in the stdlib without
breaking people building at desk with older toolchains, so let's add a
feature flag.
The concrete nesting limit, which defaults to 30, catches
things like A == G<A>. However, with something like
A == (A, A), you end up with an exponential problem size
before you hit the limit.
Add two new limits.
The first is the total size of the concrete type, counting
all leaves, which defaults to 4000. It can be set with the
-requirement-machine-max-concrete-size= frontend flag.
The second avoids an assertion in addTypeDifference() which
can be hit if a certain counter overflows before any other
limit is breached. This also defaults to 4000 and can be set
with the -requirement-machine-max-type-differences= frontend flag.
Package the flag into `performanceHacksEnabled()` method on
`ConstraintSystem` and start using it to wrap all of the hacks
in constraint generator and the solver.
Reflection metadata lookup failures are notoriously difficult to debug
because there is no error handling in TypeLowering outside of
compile-time #ifdef'd fprintf(stderr) calls. The nicest thing to do
would be to adopt llvm::Expected<> but TypeLowering is also included
in the standard library, which only has access to a tiny subset of the
LLVM Support library. This patch adds a place to store a pointer to
the first encountered error, which can then be converted to an
llvm::Error at the API level.