When calling a distributed function for an actor that might not be local,
the call can throw due to the distributed actor system producing an
error. The function might, independently, also throw. When the
function uses typed throws, we incorrectly treated the call is if it
would always throw the error type specified by the function. This
leads to incorrectly accepting invalid code, and compiler crashes in
SILGen.
The change here is to always mark calls to distributed functions
outside the actor as "implicitly throwing", which makes sure that we
treat the call sites as throwing 'any Error'. The actual handling of
the typed throw (from the local function) and the untyped throw (from
the distributed actor system) occurs in thunk generation in SILGen,
and was already handled correctly.
Fixes rdar://144093249, and undoes the ban introduced by rdar://136467528
A read access asserts that the memory location is immutable for the duration
of the access, so it can be treated as a borrow rather than a mutable lvalue.
Doing this allows the borrow formal access scope fixes from #79084 to apply
to situations where a loadable type undergoes an accessor-based access with
indirect arguments (such as for public accessors when library evolution is
enabled for the type). Fixes rdar://143334632.
'ParserUnit' is used for analyzing syntax structures _mainly_ in
SourceKit.
Since we removed IfConfigDecl from AST, ParserUnit didn't
inclue any AST in #if ... #endif regions even for active region because
it used to consider all inactive. Instead, consider every region
"active" and include all the AST nodes.
rdar://117387631
When diagnosing a declaration that is more available than its context, to
preserve source compatibility we need to downgrade the diagnostic to a warning
when the outermost declaration is an extension. This logic regressed with
https://github.com/swiftlang/swift/pull/77950 and my earlier attempt to fix
this (https://github.com/swiftlang/swift/pull/78832) misidentified what had
regressed.
Really resolves rdar://143423070.
Checking each module dependency info if it is up-to-date with respect to when the cache contents were serialized in a prior scan.
- Add a timestamp field to the serialization format for the dependency scanner cache
- Add a flag "-validate-prior-dependency-scan-cache" which, when combined with "-load-dependency-scan-cache" will have the scanner prune dependencies from the deserialized cache which have inputs that are newer than the prior scan itself
With the above in-place, the scan otherwise proceeds as-is, getting cache hits for entries still valid since the prior scan.
Since resolving the domain of an `@available` attribute is done during type
checking now, diagnostics about unexpected versions for a domain need to be
emitted at that point instead of during parsing. It doesn't make sense to
maintain the special version of this diagnostic that is emitted during parsing
for the universal availability domain only.
SourceKit-LSP tests depend on the exact behavior of this diagnostic (which I
don't plan to preserve) so I'm reverting the consolidation temporarily to get
unblocked.
This commit removes the guardrails in ImportDecl.cpp:SwiftDeclConverter
that prevent it from importing non-public C++ members. It also
accordingly adjusts all code that assumes generated Swift decls should
be public. This commit does not import non-public inherited members;
that needs its own follow-up patch.
Note that Swift enforces stricter invariants about access levels than C++.
For instance, public typealiases cannot be assigned private underlying types,
and public functions cannot take or return private types. Meanwhile,
both of these patterns are supported in C++, where exposing private types
from a class's public interface is considered feature. As far as I am aware,
Swift was already importing such private-containing public decls from C++
already, but I added a test suite, access inversion, that checks and
documents this scenario, to ensure that it doesn't trip any assertions.