Availability checking for types was only suppressed when the immediate context
for the use of the type was explicitly marked unavailable. Availability is
lexical so the checking should be suppressed in the entire scope instead.
This is something that I have wanted to add for a while and have never had the
need to. I need it now to fix a bug in the bots where I am forced to use IRGen
output to test ThunkLowering which causes platform level differences to show up
in the FileCheck output. With this, I can just emit the actual lowered SIL
output and just test it at that level. There are other cases like this where we
are unable to test lowered SIL so we use IRGen creating this brittleness.
Hopefully this stops this problem from showing up in the future.
rdar://138845396
Improve the version/flags extract from interface file by moving away
from using Regex and limiting the search to the beginning of the file.
Switch away from Regex will give 5-10% improvement in time and
instruction counts, and limiting the search lines can save a lot of time
if the swiftinterface is large. For example, the extract time for Swift
stdlib is 10x faster after the patch.
Current strategey for limiting the line to search is by only parsing the
first comment block.
Add flag `-load-resolved-plugin` to load macro plugin, which provides a
pre-resolved entry into PluginLoader so the plugins can be loaded based
on module name without searching the file system. The option is mainly
intended to be used by explicitly module build and the flag is supplied
by dependency scanner.
Use a worklist instead, and bump the size of the
inline set storage. This shaves ~30ms off the
time it takes to do this cached completion:
```
import SwiftUI
Table(#^CC^#
```
Today ParenType is used:
1. As the type of ParenExpr
2. As the payload type of an unlabeled single
associated value enum case (and the type of
ParenPattern).
3. As the type for an `(X)` TypeRepr
For 1, this leads to some odd behavior, e.g the
type of `(5.0 * 5).squareRoot()` is `(Double)`. For
2, we should be checking the arity of the enum case
constructor parameters and the presence of
ParenPattern respectively. Eventually we ought to
consider replacing Paren/TuplePattern with a
PatternList node, similar to ArgumentList.
3 is one case where it could be argued that there's
some utility in preserving the sugar of the type
that the user wrote. However it's really not clear
to me that this is particularly desirable since a
bunch of diagnostic logic is already stripping
ParenTypes. In cases where we care about how the
type was written in source, we really ought to be
consulting the TypeRepr.
This problem comes up with the following example:
```swift
class A {
var description = ""
}
class B {
let a = A()
func b() {
let asdf = ""
Task { @MainActor in
a.description = asdf // Sending 'asdf' risks causing data races
}
}
}
```
The specific issue is that the closure we generate actually includes an
implicit(any) parameter at the SIL level which occurs after the callee operand
but before the captures. This caused the captured variable index from the AST
and the one we compute from the partial_apply to differ by 1. So we need to
subtract 1 in such a case. That is why we used to print 'asdf' instead of 'a'
above.
DISCUSSION: This shows an interesting difference between SIL applied arg indices
and AST indices. SIL applied arg indices would include the implicit(any)
parameter since it is a parameter in the SIL function type. In contrast, this
doesn't show up in the formal AST parameters or captures. To make it easier to
reason about this, I added a new API to ApplySite called
ApplySite::getASTAppliedArgIndex and added large comments to
getASTAppliedArgIndex and getAppliedArgIndex that explains the issue.
rdar://136593706
https://github.com/swiftlang/swift/issues/76648
This change refactors the top-level dependency scanning flow to follow the following procedure:
Scan():
1. From the source target under scan, query all imported module identifiers for a *Swift* module. Leave unresolved identifiers unresolved. Proceed transitively to build a *Swift* module dependency graph.
2. Take every unresolved import identifier in the graph from (1) and, assuming that it must be a Clang module, dispatch all of them to be queried in-parallel by the scanner's worker pool.
3. Resolve bridging header Clang module dpendencies
4. Resolve all Swift overlay dependencies, relying on all Clang modules collected in (2) and (3)
5. For the source target under scan, use all of the above discovered module dependencies to resolve all cross-import overlay dependencies
Collect all types in the substitution map which constitute
type-dependent operands and record them in the instruction's operand
list. Fixes a bug where open_existential_metatype (e.g.) is deleted as
dead because it has no users even when the type it defines is used in a
substitution map of a builtin.
The specific problem here is that this causes MarkUnresolvedMoveAddr to be
within the SINGLE_VALUE_INST_RANGE which defines the classify method used to
determine if casting to a SingleValueInstruction is ok. This is of course not ok
in this case since mark_unresolved_move_addr is actually a NonValueInst.
I noticed this b/c I made the same mistake with a new instruction I am added and
hit a crash in the tests as a result of it being classified as a single value
instruction. After fixing that, I checked for any more instances of this issue
and found that mark_unresolved_move_addr was similarly afflicted.
There cannot be undefined behavior at compile time, so these warnings can be
ignored when `offsetof` is used in a static assert:
```
warning: offset of on non-standard-layout type 'AsyncTask' [-Winvalid-offsetof]
```
If the feature is enabled, base the requirement for the underscored
accessors on the availability of the non-underscored accessors. If the
(non-underscored) accessor's was available earlier than the feature,
interpret that to mean that the underscored version was available in
that earlier version, and require the underscored version. The goal is
to ensure that the ABI is preserved, so long as the simplest migration
is done (namely, deleting the underscores from the old accessors).
For modify2, cache the required-ness in the same way that it is cached
for modify.