Put AvailabilityRange into its own header with very few dependencies so that it
can be included freely in other headers that need to use it as a complete type.
NFC.
This attribute makes it so that a parameter of the annotated type, as well as
any type structurally containing that type as a field, becomes passed as
if `@_addressable` if the return value of the function has a dependency on
the parameter. This allows nonescapable values to take interior pointers into
such types.
Right now it is basically a version of nonisolated beyond a few simple cases
like constructors/destructors where we are pretty sure we want to not support
this.
This is part of my bringup strategy for changing nonisolated/unspecified to be
caller isolation inheriting.
I need this today to add the implicit isolated parameter... but I can imagine us
adding more implicit parameters in the future, so it makes sense to formalize it
so it is easier to do in the future.
Extend the module trace format with a field indicating whether a given
module, or any module it depends on, was compiled with strict memory
safety enabled. This separate output from the compiler can be used as
part of an audit to determine what parts of Swift programs are built
with strict memory safety checking enabled.
When Swift passes search paths to clang, it does so directly into the HeaderSearch. That means that those paths get ordered inconsistently compared to the equivalent clang flag, and causes inconsistencies when building clang modules with clang and with Swift. Instead of touching the HeaderSearch directly, pass Swift search paths as driver flags, just do them after the -Xcc ones.
Swift doesn't have a way to pass a search path to clang as -isystem, only as -I which usually isn't the right flag. Add an -Isystem Swift flag so that those paths can be passed to clang as -isystem.
rdar://93951328
Protocol conformances have a handful attributes that can apply to them
directly, including @unchecked (for Sendable), @preconcurrency, and
@retroactive. Generalize this into an option set that we carry around,
so it's a bit easier to add them, as well as reworking the
serialization logic to deal with an arbitrary number of such options.
Use this generality to add support for @unsafe conformances, which are
needed when unsafe witnesses are used to conform to safe requirements.
Implement general support for @unsafe conformances, including
producing a single diagnostic per missing @unsafe that provides a
Fix-It and collects together all of the unsafe witnesses as notes.
Instead of producing a warning for each use of an unsafe entity,
collect all of the uses of unsafe constructs within a given function
and batch them together in a single diagnostic at the function level
that tells you what you can do (add `@unsafe` or `@safe(unchecked)`,
depending on whether all unsafe uses were in the definition), plus
notes identifying every unsafe use within that declaration. The new
diagnostic renderer nicely collects together in a single snippet, so
it's easier to reason about.
Here's an example from the embedded runtime that previously would have
been 6 separate warnings, each with 1-2 notes:
```
swift/stdlib/public/core/EmbeddedRuntime.swift:397:13: warning: global function 'swift_retainCount' involves unsafe code; use '@safe(unchecked)' to assert that the code is memory-safe
395 |
396 | @_cdecl("swift_retainCount")
397 | public func swift_retainCount(object: Builtin.RawPointer) -> Int {
| `- warning: global function 'swift_retainCount' involves unsafe code; use '@safe(unchecked)' to assert that the code is memory-safe
398 | if !isValidPointerForNativeRetain(object: object) { return 0 }
399 | let o = UnsafeMutablePointer<HeapObject>(object)
| | `- note: call to unsafe initializer 'init(_:)'
| `- note: reference to unsafe generic struct 'UnsafeMutablePointer'
400 | let refcount = refcountPointer(for: o)
| | `- note: reference to let 'o' involves unsafe type 'UnsafeMutablePointer<HeapObject>'
| `- note: call to global function 'refcountPointer(for:)' involves unsafe type 'UnsafeMutablePointer<Int>'
401 | return loadAcquire(refcount) & HeapObject.refcountMask
| | `- note: reference to let 'refcount' involves unsafe type 'UnsafeMutablePointer<Int>'
| `- note: call to global function 'loadAcquire' involves unsafe type 'UnsafeMutablePointer<Int>'
402 | }
403 |
```
Note that we have lost a little bit of information, because we no
longer produce "unsafe declaration was here" notes pointing back at
things like `UnsafeMutablePointer` or `recountPointer(for:)`. However,
strict memory safety tends to be noisy to turn on, so it's worth
losing a little bit of easily-recovered information to gain some
brevity.
Use `Decl::attachParsedAttrs()` instead of `Decl::setAttrs()` to attach attributes to a declaration in ASTGen. This causes the common attribute-setup logic there to be run.
NFC in this commit because none of the attributes that have special setup logic are currently implemented in ASTGen. Prepares to add support for `@abi` in a future commit.
What’s implemented now is actually *far* more thorough than what the surface syntax can currently express, mainly because I can’t apply @abi to nominal types yet.
Sema now type-checks the alternate ABI-providing decls inside of @abi attributes.
Making this work—particularly, making redeclaration checking work—required making name lookup aware of ABI decls. Name lookup now evaluates both API-providing and ABI-providing declarations. In most cases, it will filter ABI-only decls out unless a specific flag is passed, in which case it will filter API-only decls out instead. Calls that simply retrieve a list of declarations, like `IterableDeclContext::getMembers()` and friends, typically only return API-providing decls; you have to access the ABI-providing ones through those.
As part of that work, I have also added some basic compiler interfaces for working with the API-providing and ABI-providing variants. `ABIRole` encodes whether a declaration provides only API, only ABI, or both, and `ABIRoleInfo` combines that with a pointer to the counterpart providing the other role (for a declaration that provides both, that’ll just be a pointer to `this`).
Decl checking of behavior specific to @abi will come in a future commit.
Note that this probably doesn’t properly exercise some of the new code (ASTScope::lookupEnclosingABIAttributeScope(), for instance); I expect that to happen only once we can rename types using an @abi attribute, since that will create distinguishable behavior differences when resolving TypeReprs in other @abi attributes.
The new `DECL_ATTR_FEATURE_REQUIREMENT` macro in DeclAttr.def can be used to declare that an attribute should only be available when a related language feature is enabled.
Effects:
• `#if hasAttribute(someAttr)` will return `false` unless the required feature is enabled.
• Code completion will not include the attribute unless the required feature is enabled.
• `TypeChecker::checkDeclAttributes()` diagnoses non-implicit uses of the attribute.
Add this mechanism and use it to tie @abi to the ABIAttribute feature. Also design tests for it.
This attribute will allow you to specify an alternate version of the declaration used for mangling. It will allow minor adjustments to be made to declarations so long as they’re still compatible at the calling convention level, such as refining isolation or sendability, renaming without breaking ABI, etc.
The attribute is behind the experimental feature flag `ABIAttribute`.
The `@differentiable` and `@derivative` attributes need a parent pointer. Move the code to populate it from Parser to AST so it can be more easily shared between the parsers.
Done in preparation for similar code to be added for `@abi`.