Introsuce a new "forward" algorithm for trailing closures where
the unlabeled trailing closure argument matches the next parameter in
the parameter list that can accept an unlabeled trailing closure.
The "can accept an unlabeled trailing closure" criteria looks at the
parameter itself. The parameter accepts an unlabeled trailing closure
if all of the following are true:
* The parameter is not 'inout'
* The adjusted type of the parameter (defined below) is a function type
The adjusted type of the parameter is the parameter's type as
declared, after performing two adjustments:
* If the parameter is an @autoclosure, use the result type of the
parameter's declared (function) type, before performing the second
adjustment.
* Remove all outer "optional" types.
For example, the following function illustrates both adjustments to
determine that the parameter "body" accepts an unlabeled trailing
closure:
func doSomething(body: @autoclosure () -> (((Int) -> String)?))
This is a source-breaking change. However, there is a "fuzzy" matching
rule that that addresses the source break we've observed in practice,
where a defaulted closure parameter precedes a non-defaulted closure
parameter:
func doSomethingElse(
onError: ((Error) -> Void)? = nil,
onCompletion: (Int) -> Void
) { }
doSomethingElse { x in
print(x)
}
With the existing "backward" scan rule, the trailing closure matches
onCompletion, and onError is given the default of "nil". With the
forward scanning rule, the trailing closure matches onError, and there
is no "onCompletion" argument, so the call fails.
The fuzzy matching rule proceeds as follows:
* if the call has a single, unlabeled trailing closure argument, and
* the parameter that would match the unlabeled trailing closure
argument has a default, and
* there are parameters *after* that parameter that require an argument
(i.e., they are not variadic and do not have a default argument)
then the forward scan skips this parameter and considers the next
parameter that could accept the unlabeled trailing closure.
Note that APIs like doSomethingElse(onError:onCompletion:) above
should probably be reworked to put the defaulted parameters at the
end, which works better with the forward scan and with multiple
trailing closures:
func doSomethingElseBetter(
onCompletion: (Int) -> Void,
onError: ((Error) -> Void)? = nil
) { }
doSomethingElseBetter { x in
print(x)
}
doSomethingElseBetter { x in
print(x)
} onError: { error in
throw error
}
This doesn't yet allow including C++ headers on platforms where libc++
isn't the default; see comments in UnixToolChains.cpp for details.
However, it does, for example, allow throwing and catching exceptions in C++
code used through interop, unblocking
https://github.com/apple/swift/pull/30674/files.
The flags (-enable-experimental-cxx-interop and -experimental-cxx-stdlib) carry
"experimental" in the name to emphasize that C++ interop is still an
experimental feature.
Co-authored-by: Michael Forster <forster@google.com>
Describe the backward-deployment libraries via a preprocessor-driven
table. Macro-metaprogramming the two places in the code base---the
driver and IRGen---to use this tabble to determine which
backward-compatibility libraries to link against.
This reverts commit 621b3b4223.
The driver is double faulting on my Linux box (Fedora 32 / x86-64). It
crashes due to heap corruption, then hangs trying to introspect and
print the stack. There also appears to be an unrelated(?) uninitialized
memory error that valgrind detects (as opposed to malloc's own self
diagnostics).
Previously the path to covered files in the __LLVM_COV / __llvm_covmap
section were absolute. This made remote builds with coverage information
difficult because all machines would have to have the same build root.
This change uses the values for `-coverage-prefix-map` to remap files in
the coverage info to relative paths. These paths work correctly with
llvm-cov when it is run from the same source directory as the
compilation, or from a different directory using the `-path-equivalence`
argument.
This is analogous to this change in clang https://reviews.llvm.org/D81122
getSingleFrontendInvocationFromDriverArguments is set up to never produce file
lists in the output frontend arguments, but since the driver accepts file lists
as input arguments, this should too.
-enable-experimental-private-intransitive-dependencies -> -enable-direct-intramodule-dependencies
-disable-experimental-private-intransitive-dependencies -> -disable-direct-intramodule-dependencies
While we're here, rename DependencyCollector::Mode's constants and clean
up the documentation.
This commit adds -lto flag for driver to enable LTO at LLVM level.
When -lto=llvm given, compiler emits LLVM bitcode file instead of object
file and perform thin LTO using libLTO.dylib plugin.
When -lto=llvm-full given, perform full LTO instead of thin LTO.
Clang provides options to override that default value.
These options are accessible via the -Xcc flag.
Some Swift functions explicitly disable the frame pointer.
The clang options will not override those.
Today, the driver does not propagate the flag to the frontend
but also does not emit an error (silently consuming the flag
instead).
I'll open a similar PR for apple/swift-driver once this one is
merged, in case there are any issues that need to be worked out
first.
Fixes SR-12834.
This default formatting style remains the same "LLVM style". "Swift style"
is what was previously enabled via -enable-experimental-diagnostic-formatting
When producing frontend arguments for sourcekitd, force the output mode
to -typecheck so that we do not create any temporary output files in the
driver. Previously, any sourcekitd operation that created a compiler
invocation would create 0-sized .o file inside $TMPDIR that would never
be cleaned up.
The new swift-driver project handles temporaries much better as
VirtualPath, and should not need this approach.
rdar://62366123