Wrap the `InheritedEntry` array available on both `ExtensionDecl` and
`TypeDecl` in a new `InheritedTypes` class. This class will provide shared
conveniences for working with inherited type clauses. NFC.
We'll be using the new swift-syntax diagnostic formatter in the near
future, as it is nearly available on all host platforms. So, remove
the C++ formatter that did source-line annotation, falling back to the
"LLVM" style when swift-syntax is not compiled in.
The "grouped diagnostics" feature can handle multiple
warnings/errors/remarks in a single grouping, but doing so isn't very
ergonomic for users because the primary warning/error/remark can be
buried in the source file. As a first step toward improving this
situation, always break up groups at a new warning/error/remark.
This enables one to use varying prefixes when checking diagnostics with the
DiagnosticVerifier. So for instance, I can make a test work both with and
without send-non-sendable enabled by adding additional prefixes. As an example:
```swift
// RUN: %target-swift-frontend ... -verify-additional-prefix no-sns-
// RUN: %target-swift-frontend ... -verify-additional-prefix sns-
let x = ... // expected-error {{This is always checked no matter what prefixes I added}}
let y = ... // expected-no-sns-error {{This is only checked if send non sendable is disabled}}
let z = ... // expected-sns-error {{This is only checked if send non sendable is enabled}}
let w = ... // expected-no-sns-error {{This is checked for a specific error when sns is disabled...}}
// expected-sns-error @-1 {{and for a different error when sns is enabled}}
```
rdar://114643840
This option is designed to be used in conjunction with
`-experimental-lazy-typecheck` and `-experimental-skip-all-function-bodies`
when emitting a resilient module. The emitted binary module should contain only
the decls needed by clients and should contain roughly the same contents as it
would if the corresponding swiftinterface were emitted instead and then built.
This functionality is a work in progress. Some parts of the AST may still get
typechecked unnecessarily. Additionally, serialization does not trigger the
appropriate typechecking requests for some ASTs and then fails due to missing
types.
Resolves rdar://114230586
Macro implementations can come from various locations associated with
different search paths. Add a frontend flag `-Rmacro-loading` to emit
a remark when each macro implementation module is resolved, providing
the kind of macro (shared library, executable, shared library loaded
via the plugin server) and appropriate paths. This allows one to tell
from the build load which macros are used.
Addresses rdar://110780311.
This action is currently just an alias of the `-resolve-imports` action.
However, it's named to more clearly reflect the purpose which is to do the
minimal typechecking needed in order to emit the requested outputs. This mode
is intended to improve performance when emitting `.swiftinterface` and `.tbd`
files.
When `-warn-on-potentially-unavailable-enum-case` was introduced, the build
system was required to invoke `swift-frontend` at artificially low deployment
targets when emitting `.swiftinterface` files for legacy architectures. Because
the deployment target was low, some availability diagnostics needed to be
de-fanged in order to allow module interface emission to succeed. Today, the
build system is able to use the correct deployment target when emitting module
interfaces and the `-warn-on-potentially-unavailable-enum-case` is superfluous,
so deprecate it.
Resolves rdar://114092047
Experimental mode for generating module interfaces without running
primary file type-checking. The idea is that the ASTPrinter triggers
requests to only do the minimum amount of type checking work
possible while printing the interface for a module's public
declarations.
These requests may emit diagnostics, but the ASTPrinter should in
theory already be robust against invalid code.
Instead of the code querying the compiler's built-in Clang instance, refactor the
dependency scanner to explicitly keep track of module output path. It is still
set according to '-module-cache-path' as it has been prior to this change, but
now the scanner can use a different module cache for scanning PCMs, as specified
with '-clang-scanner-module-cache-path', without affecting module output path.
Resolves rdar://113222853
Clang dependency scanning produces scanner PCMs which we may want to live in a
different filesystem location than the main build module cache.
Resolves rdar://113222853
In C++20, types that declare or delete their default/copy/move constructors are no longer aggregates, so the aggregate uses of these types will not compile under C++20. Adding them fixes this, without affecting older language modes.