When building for back-deployment, emit calls to an open-coded
`_swift_task_dealloc_through` function rather than the runtime
`swift_task_dealloc_through` which doesn't exist on them.
`Builtin.FixedArray<let N: Int, T: ~Copyable & ~Escapable>` has the layout of `N` elements of type `T` laid out
sequentially in memory (with the tail padding of every element occupied by the array). This provides a primitive
on which the standard library `Vector` type can be built.
Deallocate dynamic allocas done for metadata/wtable packs. These
stackrestore calls are inserted on the dominance frontier and then stack
nesting is fixed up. That was achieved as follows:
Added a new IRGen pass PackMetadataMarkerInserter; it
- determines if there are any instructions which might allocate on-stack
pack metadata
- if there aren't, no changes are made
- if there are, alloc_pack_metadata just before instructions that could
allocate pack metadata on the stack and dealloc_pack_metadata on the
dominance frontier of those instructions
- fixup stack nesting
During IRGen, the allocations done for metadata/wtable packs are
recorded and IRGenSILFunction associates them with the instruction that
lowered. It must be the instruction after some alloc_pack_metadata
instruction. Then, when visiting the dealloc_pack_metadata instructions
corresponding to that alloc_pack_metadata, deallocate those packs.
For each decl that needs a `#_hasSymbol()` query function, emit the corresponding helper function body during IRGen. Use `IRSymbolVisitor` to collect linkable symbols associated with the decl and return true from the helper function if the address of every associated symbol is non-null.
Resolves rdar://101884587
The relationship between the code in these two libraries was fundamentally circular, indicating that they should not have been split. With other changes that I'm making to remove circular dependencies from the CMake build graph I eventually uncovered that these two libraries were required to link each other circularly, but that had been hidden by other cycles in the build graph previously.
- Remove cycle between swiftIRGen and swiftTBGen.
- Remove cycle between swiftSIL and swiftSerialization.
- Remove cycle between swiftFrontendTool and swiftIDE.
* move the source file to SILOptimizer/IRGenTransforms
* add a file level comment
* document and verify that the pass runs after serialization
* catch overflows when truncating a constant value
TargetConstantFolding performs constant folding for target-specific values:
```
MemoryLayout<S>.size
MemoryLayout<S>.alignment
MemoryLayout<S>.stride
```
Constant folding those expressions in the middle of the SIL pipeline enables other optimizations to e.g. allow such expressions in statically allocated global variables (done by the GlobalOpt pass).
The implementation requires to create a temporary IRGenModule, which is used to get actual constant sizes/alignments from IRGen's type lowering.
rdar://94831524
This change extends the clang header printer to start emitting C++ classes for Swift struct types with the correct struct layout in them (size + alignment)
Otherwise we set it on all targets/languages in a subdirectory (I forgot if it
propagates up). Regardless, this type of viral stuff is something we want to
move away from since it creates a code that is a "forall" piece of code rather
than a piece of code that only effects a single target.
I also conditionalized the actual definitions being added on the compiled file's
language being C,CXX,OBJC,OBJCXX since as we add Swift sources to the host side
of the compiler, we will not want these flags to propagate to Swift sources.
Previously, because partial apply forwarders for async functions were
not themselves fully-fledged async functions, they were not able to
handle dynamic functions. Specifically, the reason was that it was not
possible to produce an async function pointer for the partial apply
forwarder because the size to be used was not knowable.
Thanks to https://github.com/apple/swift/pull/36700, that cause has been
eliminated. With it, partial apply forwarders are fully-fledged async
functions and in particular have their own async function pointers.
Consequently, it is again possible for these partial apply forwarders to
handle non-constant function pointers.
Here, that behavior is restored, by way of reverting part of
ee63777332 while preserving the ABI it
introduced.
rdar://76122027
Previously, thick async functions were represented sometimes as a pair
of (AsyncFunctionPointer, nullptr)--when the thick function was produced
via a thin_to_thick_function, e.g.--and sometimes as a pair of
(FunctionPointer, ThickContext)--when the thick function was produced by
a partial_apply--with the size stored in the slot of the ThickContext.
That optimized for the wrong case: partial applies of dynamic async
functions; in that case, there is no appropriate AsyncFunctionPointer to
form when lowering the partial_apply instruction. The far more common
case is to know exactly which function is being partially applied. In
that case, we can form the appropriate AsyncFunctionPointer.
Furthermore, the previous representation made calling a thick function
more complex: it was always necessary to check whether the context was
in fact null and then proceed along two different paths depending.
Here, that behavior is corrected by creating a thunk in a mandatory
IRGen SIL pass in the case that the function that is being partially
applied is dynamic. That new thunk is then partially applied in place
of the original partial_apply of the dynamic function.
With an inverted pipeline, IRGen needs to be able
to compute the linker directives itself, so sink
it down such that it can be computed by the
`IRGenDescriptor`.
This adds code that can be used to build recursive type layouts. And
code that generates value witness IR based on the recursive type
layouts.
Value witnesses generated based on type layouts will only refer to
archetypes when computing fields offsets for frozen generic types (vs
instantiated type medata).
rdar://51988441
Rather than registering individual IRGen passes
when we want to execute them, store function
pointers to all the pass constructors on the
ASTContext. This will make it easier to requestify
the execution of pass pipelines.
SIL differentiability witnesses are a new top-level SIL construct mapping
an "original" SIL function and derivative configuration to derivative SIL
functions.
This patch adds `SILDifferentiabilityWitness` IRGen.
`SILDifferentiabilityWitness` has a fixed `{ i8*, i8* }` layout:
JVP and VJP derivative function pointers.
Resolves TF-1146.
This is a follow up to the discussion on #22740 to switch the host
libraries to use the `target_link_libraries` rather than the
`LINK_LIBRARIES` special handling. This allows the dependency to be
properly tracked by CMake and allows us to use the more modern syntax.
This reverts commit 121f5b64be.
Sorry to revert this again. This commit makes some pretty big changes. After
messing with the merge-conflict created by this internally, I did not feel
comfortable landing this now. I talked with Saleem and he agreed with me that
this was the right thing to do.
The key thing here is that all of the underlying code is exactly the same. I
purposely did not debride anything. This is to ensure that I am not touching too
much and increasing the probability of weird errors from occurring. Thus the
exact same code should be executed... just the routing changed.
Fixes a regression in the source compatibility suite which I had a
lot of trouble extracting into a separate test case.
Most of this patch is just moving the outlining code into a separate
file and organizing it into a helper class instead of copy/pasting
so much code. The main functional change is implicit in the difference
between collecting formal metadata and collecting it for layout, which
then is exploited in bindMetadataParameters.
As a secondary change, stop collecting metadata for class-bounded
archetypes; we don't actually need it to do value operations.
This includes global generic and non-generic global access
functions, protocol associated type access functions,
swift_getGenericMetadata, and generic type completion functions.
The main part of this change is that the functions now need to take
a MetadataRequest and return a MetadataResponse, which is capable
of expressing that the request can fail. The state of the returned
metadata is reported as an second, independent return value; this
allows the caller to easily check the possibility of failure without
having to mask it out from the returned metadata pointer, as well
as allowing it to be easily ignored.
Also, change metadata access functions to use swiftcc to ensure that
this return value is indeed returned in two separate registers.
Also, change protocol associated conformance access functions to use
swiftcc. This isn't really related, but for some reason it snuck in.
Since it's clearly the right thing to do, and since I really didn't
want to retroactively tease that back out from all the rest of the
test changes, I've left it in.
Also, change generic metadata access functions to either pass all
the generic arguments directly or pass them all indirectly. I don't
know how we ended up with the hybrid approach. I needed to change all
the code-generation and calls here anyway in order to pass the request
parameter, and I figured I might as well change the ABI to something
sensible.
We want to be able to re-order existing protocol requirements
and add new protocol requirements with default implementations.
Enable this by wrapping the witness table lookup inside a
thunk and calling the thunk, instead of open-coding the
witness table lookup directly in client code.
These changes caused a number of issues:
1. No debug info is emitted when a release-debug info compiler is built.
2. OS X deployment target specification is broken.
3. Swift options were broken without any attempt any recreating that
functionality. The specific option in question is --force-optimized-typechecker.
Such refactorings should be done in a fashion that does not break existing
users and use cases.
This reverts commit e6ce2ff388.
This reverts commit e8645f3750.
This reverts commit 89b038ea7e.
This reverts commit 497cac64d9.
This reverts commit 953ad094da.
This reverts commit e096d1c033.
rdar://30549345
This patch splits add_swift_library into two functions one which handles
the simple case of adding a library that is part of the compiler being
built and the second handling the more complicated case of "target"
libraries, which may need to build for one or more targets.
The new add_swift_library is built using llvm_add_library, which re-uses
LLVM's CMake modules. In adapting to use LLVM's modules some of
add_swift_library's named parameters have been removed and
LINK_LIBRARIES has changed to LINK_LIBS, and LLVM_LINK_COMPONENTS
changed to LINK_COMPONENTS.
This patch also cleans up libswiftBasic's handling of UUID library and
headers, and how it interfaces with gyb sources.
add_swift_library also no longer has the FILE_DEPENDS parameter, which
doesn't matter because llvm_add_library's DEPENDS parameter has the same
behavior.
Hoist alloc_stack instructions of 'generic' or resilient type to the entry
block. At the same time also perform a very simple stack coloring analysis.
This does not use a true liveness-analysis yet but rather employs some simple
conservative checks to see whether the live ranges of two alloc_stacks might
interfere.
AllocStackHoisting is an IRGen SIL pass. This allows for using IRGen's type
lowering information. Furthermore, hoisting and merging the alloc_stack
instructions this late does not interfere with SIL optimizations because the
resulting SIL never gets serialized.