SequenceExprSyntax should have odd number elements. Previously 'a as b'
was parsed like:
```
(sequence_expr
(identifier_expr "a"),
(as_expr
'as'
(typeidentifier "b")))
```
So it had even number elements. Now it's parsed
```
(sequence_expr
(identifier_expr "a"),
(unresolved_as_expr 'as')
(type_expr
(typeidentifier "b")))
```
The old syntax was
@opened("UUID") constraintType
Where constraintType was the right hand side of a conformance requirement.
This would always create an archetype where the interface type was `Self`,
so it couldn't cope with member types of opened existential types.
Member types of opened existential types is now a thing with SE-0309, so
this lack of support prevented writing SIL test cases using this feature.
The new syntax is
@opened("UUID", constraintType) interfaceType
The interfaceType is a type parameter rooted in an implicit `Self`
generic parameter, which is understood to be the underlying type of the
existential.
Fixes rdar://problem/93771238.
This represents labeled statements as an explicit kind of statement and removes the Labeled trait. Any kind of statement is allowed to be labeled in the tree, but we specifically diagnose the syntax elements that aren't allowed to have labels. This homogenizes the way clients deal with statement labels and also makes parser recovery quite a bit easier in the case where we have a label but no actual statement following it.
When the source code is invalid, this allows us to represent tokens that could not be used to form a valid syntax tree with more fidelity.
This commit does not start using GarbageNodes yet, it just sets everything up for them.
Introduce support for parsing declaration attributes that occur within
example:
#if hasAttribute(frozen)
@frozen
#endif
public struct X { ... }
will apply to "frozen" attribute to the struct `X`, but only when the
compiler supports the "frozen" attribute.
Correctly determining whether a particular `#if` block contains
attributes to be associated with the following declaration vs.
starting a new declaration requires arbitrary lookahead. The parser
will ensure that at least one of the branches of the `#if` contains an
attribute, and that none of the branches contains something that does
not fit the attribute grammar, before committing to parsing the `#if`
clause as part of the declaration attributes. This lookahead does
occur at the top level (e.g., in the parsing of top-level declarations
and code), but should only need to scan past the first `#if` line to
the following token in the common case.
Unlike other `#if` when used to wrap statements or declarations, we
make no attempt to record the `#if` not taken anywhere in the AST.
This reflects a change in attitude in the design of the AST, because
we have found that trying to represent this information there (e.g.,
via `IfConfigDecl`) complicates clients while providing little value.
This information is best kept in the syntax tree, only.
When we encounter a check like `#if compiler(>=6.0) && something` or
`#if swift(<6.0) || something`, and the left-hand term is a versioning
check that determines the result of the whole condition, then we will
not attempt to validate the right-hand term. This allows us to use
versioned checks along with new discovery features (say, if we add an
`#if attribute(x)`) without having to next conditions.
Introduce the `-enable-upcoming-feature X` command-line argument to
allow one to opt into features that will be enabled in an upcoming language
mode. Stage in several features this way (`ConciseMagicFile`,
`ForwardTrailingClosures`, `BareSlashRegexLiterals`).
[Distributed] generic and inner test; without one edge case
[Distributed] fix distributed_thunk test; unsure about those extra hops, could remove later
[Distributed] Remove type pretending in getSILFunctionType; it is not needed
It seems our constant replacement in the earlier phases is enough, and
we don't need this trick at all.
[Distributed] Use thunk when calling cross-actor on DA protocols
Ban space and tab as the last character of a
`/.../` regex literal, unless escaped with a
backslash. This matches the banning of space and
tab as the first character, and helps avoid breaking
source in even more cases.
Fix a crash that could occur when performing
completion at the start of an accessor body.
Previously we assumed `CodeCompletion` would never
be null due to function body skipping in the first
pass of code completion. However with the
introduction of the ability to avoid skipping in
certain cases, it might be now be null if we need
to avoid skipping. Found by the stress tester.
rdar://95772803
While skipping, if we encounter a token that looks
like it could be the start of a `/.../` regex
literal, fall back to parsing the function or type
body normally, as such a token could become a
regex literal. As such, it could treat `{` and
`}` as literal, or otherwise have contents that
would be lexically invalid Swift.
To avoid falling back in too many cases, we apply
the existing regex literal heuristics. Cases that
pass the heuristic fall back to regular parsing.
Cases that fail the heuristic are further checked
to make sure they wouldn't contain an unbalanced
`{` or `}`, but otherwise are allowed to be
skipped. This allows us to continue skipping for
most occurrences of infix and prefix `/`.
This is meant as a lower risk workaround to fix the
the issue, we ought to go back to handling regex
literals in the lexer.
Resolves rdar://95354010
C++ interop is now enabled in SwiftCompilerSources, so we can remove some of the C bridging layer and use C++ classes directly from Swift.
rdar://83361087
Using the same feature set logic as experimental features, provide
feature names for "future" features, which are changes that will
become available with Swift 6. Use the feature check when determining
whether to implementation the feature instead of a language version
check, and map existing flags for these features (when available) over
to the feature set.
As an internal implementation detail, this makes it easier to reason
about when specific features are enabled (or not). If we decide to go
with piecemeal adoption support for features, it can provide an
alternative path to enabling features that feeds this mechanism.
Experimental features can only be enabled in non-production (+Asserts)
builds. They can be detected with `hasFeature` in the same manner as
"future" features.
The `-enable-experimental-feature X` flag will also look for future
features by that name, so that when an experimental feature becomes an
accepted future feature, it will still be enabled in the same manner.
Switch variadic generics over to this approach, eliminating the
specific LangOption for it.
Fixes a SwiftSyntax parsing assertion failure if there is a regex literal at the end of the file. I.e. either a single line regex literal in a file without a trailing newline or a multi-line regex literal.
This does not crash in non-assert builds.