Compute, update and handle borrowed-from instruction in various utilities and passes.
Also, used borrowed-from to simplify `gatherBorrowIntroducers` and `gatherEnclosingValues`.
Replace those utilities by `Value.getBorrowIntroducers` and `Value.getEnclosingValues`, which return a lazily computed Sequence of borrowed/enclosing values.
Call `swift_clearSensitive` after destroying or taking "sensitive" struct types.
Also, support calling C-functions with "sensitive" parameters or return values. In SIL, sensitive types are address-only and so are sensitive parameters/return values.
Though, (small) sensitive C-structs are passed directly to/from C-functions. We need re-abstract such parameter and return values for C-functions.
enabled. If two modules are in the same package and package cmo is enabled,
v-table or witness-table calls should not be generated at the use site in the
client module. Modified conformance serialization check to allow serializing
witness thunks.
Also reordered SIL functions bottom-up so the most nested referenced functions
can be serialized first. Allowed serializing a function if a shared definition
(e.g. function `print`). Added a check for resilient mode wrt struct instructions.
Added tests for SIL tables and resilient mode on/off.
rdar://124632670
Factor AbstractionPattern::conformsToKnownProtocol and lower ~Escapable using the same logic as ~Copyable.
Adds support for conditionally Escapable enums.
Correctly sets the SILType::isTrivial flags for conditionally escapable structs and enums in environments (extensions)
that provide an Escapable conformance, such as:
struct NE<E: ~Escapable> : ~Escapable {}
extension NE: Escapable {
func foo() -> Self {
// Self is both Escapable and trivial here.
self
}
}
Fixes rdar://125950218 ([nonescapable] support conditionally escapable enums)
This fixes TypeLowering for ~Copyable generics, such as:
struct S<T: ~Copyable>: ~Copyable {
var x: T
}
extension S: Copyable where T: Copyable {}
func foo<T>(s: S<T>) -> ()
Previously, TypeLowering would ignore the implicit Copyable
requirement on the archetype 'T'.
This PR implements first set of changes required to support autodiff for coroutines. It mostly targeted to `_modify` accessors in standard library (and beyond), but overall implementation is quite generic.
There are some specifics of implementation and known limitations:
- Only `@yield_once` coroutines are naturally supported
- VJP is a coroutine itself: it yields the results *and* returns a pullback closure as a normal return. This allows us to capture values produced in resume part of a coroutine (this is required for defers and other cleanups / commits)
- Pullback is a coroutine, we assume that coroutine cannot abort and therefore we execute the original coroutine in reverse from return via yield and then back to the entry
- It seems there is no semantically sane way to support `_read` coroutines (as we will need to "accept" adjoints via yields), therefore only coroutines with inout yields are supported (`_modify` accessors). Pullbacks of such coroutines take adjoint buffer as input argument, yield this buffer (to accumulate adjoint values in the caller) and finally return the adjoints indirectly.
- Coroutines (as opposed to normal functions) are not first-class values: there is no AST type for them, one cannot e.g. store them into tuples, etc. So, everywhere where AST type is required, we have to hack around.
- As there is no AST type for coroutines, there is no way one could register custom derivative for coroutines. So far only compiler-produced derivatives are supported
- There are lots of common things wrt normal function apply's, but still there are subtle but important differences. I tried to organize the code to enable code reuse, still it was not always possible, so some code duplication could be seen
- The order of how pullback closures are produced in VJP is a bit different: for normal apply's VJP produces both value and pullback closure via a single nested VJP apply. This is not so anymore with coroutine VJP's: yielded values are produced at `begin_apply` site and pullback closure is available only from `end_apply`, so we need to track the order in which pullbacks are produced (and arrange consumption of the values accordingly – effectively delay them)
- On the way some complementary changes were required in e.g. mangler / demangler
This patch covers the generation of derivatives up to SIL level, however, it is not enough as codegen of `partial_apply` of a coroutine is completely broken. The fix for this will be submitted separately as it is not directly autodiff-related.
---------
Co-authored-by: Andrew Savonichev <andrew.savonichev@gmail.com>
Co-authored-by: Richard Wei <rxwei@apple.com>
drop_deinit forwards ownership while effectively stripping the deinitializer. It is similar to a type cast.
Fixes rdar://125590074 ([NonescapableTypes] Nonescapable types
cannot have deinits)
* Allow normal function results of @yield_once coroutines
* Address review comments
* Workaround LLVM coroutine codegen problem: it assumes that unwind path never returns.
This is not true to Swift coroutines as unwind path should end with error result.
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.