Preserve conditionallyAddressableParamIndices independent of any
addressableParamIndices. The conditional dependencies are subject to change
based on type substitution.
Previously, we handled cases where we had an actual SILDeclRef constant (e.x.:
an actual function ref), but we did not handle cases where we did not have a
constant but instead just had a FunctionTypeIsolation. We now handle that
correctly.
The Protocol field isn't really necessary, because the conformance
stores the protocol. But we do need the substituted subject type
of the requirement, just temporarily, until an abstract conformance
stores its own subject type too.
Parameters of generic type need to be treated as potentially
addressable-for-dependencies, but we don't want callers using the generic
function with concrete types that are known not to be addressable-for-
dependencies to be overconstrained. In SILFunctionType lowering, lower
these dependencies distinctly as conditionally addressable, meaning that
the dependency on an argument depends on whether the concrete type of
that argument is (potentially) addressable-for-dependencies or not.
* let `SIL.Type` conform to `TypeProperties` to share the implementation of common type properties between the AST types and `SIL.Type`
* call references to an `AST.Type` `rawType` (instead of just `type`)
* remove unneeded stuff
* add comments
When creating an ExtendedASTNodeLoc from a SILLocation, if the
SILLocation passed in belongs to a swift::Stmt, we only ever use the
Stmt's StartLoc for the SourceLocation. If the SILLocation passed in,
has a SourceLocation that matches the EndLoc of the Stmt, we should
correctly set the primary ASTNodeTy PointerUnion's integer to 1, to
denote that the SourceLocation dervied from the Stmt points to the
EndLoc.
To ensure that dependent values have a persistent-enough memory representation
to point into, when an immutable binding is referenced as an addressable
argument to a call, have SILGen retroactively emit a stack allocation and
materialization that covers the binding's scope.
To ensure that dependent values have a persistent-enough memory representation
to point into, when an immutable binding is referenced as an addressable
argument to a call, have SILGen retroactively emit a stack allocation and
materialization that covers the binding's scope.
Raw identifiers are backtick-delimited identifiers that can contain any
non-identifier character other than the backtick itself, CR, LF, or other
non-printable ASCII code units, and which are also not composed entirely
of operator characters.
* factor out common methods of AST Type/CanonicalType into a `TypeProperties` protocol.
* add more APIs to AST Type/CanoncialType.
* move `MetatypeRepresentation` from SIL.Type to AST.Type and implement it with a swift enum.
* let `Builder.createMetatype` get a CanonicalType as instance type, because the instance type must not be a lowered type.
Don't include type-dependent operands in the argument list of the new keypath instruction.
Also enable the assert, which catches this problem, in release builds.
Fixes a compiler crash.
In C++, we always expected to invoke the dtor for moved-from objects.
This is not the case for swift. Fortunately, @inCxx calling convention
is already expressing that the caller supposed to destroy the object.
This fixes the missing dtor calls when calling C++ functions taking
rvalue references. Fixes#77894.
rdar://140786022
This API only makes sense for a scoped borrow-introducer such as:
- reborrow
- owned mark_dependence
Borrowing operands that forward guaranteed values do not have scope-ending uses.
This instruction obviously borrows its base value. Liveness extends to the uses
of the result.
Code that switches on OperandOwnership assumes that an Instantaneous use does
not propagate any information that may extend liveness.
This patch adds support for serialization of debug value instructions. Enablement is currently gated behind the -experimental-serialize-debug-info flag.
Previously, debug_value instructions were lost during serialization. This made it harder to debug cross module inlined functions.