This was a relict from the -sil-serialize-all days. This linkage doesn't make any sense because a private function cannot be referenced from another module (or file, in case of non-wmo compilation).
The capture arguments are a private contract between the closure and its
context, and will only ever be bound from the enclosing context, so
there's no need to obscure opaque underlying types (unless it's
serializable because it's in inlinable code, in which case we
continue to use the minimal type expansion context to account for
inlining as before.)
Fixes rdar://83378116.
Fix two bugs:
- FirstArgOwnershipForwardingSingleValueInst needs to forward its first operand.
- select_value needs to be a ForwardedBorrow for all cases and the default.
This patch updates the asynchronous main function to run the first thunk
of the function synchronously through a call to `swift_job_run`.
The runloop is killed by exiting or aborting the task that it is running
on. As such, we need to ensure that the task contains an async function
that either calls exit explicitly or aborts. The AsyncEntryPoint, that
contains this code, was added in the previous patch. This patch adds the
pieces for the actual implementation of this behaviour as well as adding
the necessary code to start the runloop.
There are now four layers of main functions before hitting the "real"
code.
@main: This is the actual main entrypoint of the program. This
constructs the task containing @async_main, grabs the main executor,
runs swift_job_run to run the first part synchronously, and finally
kicks off the runloop with a call to _asyncMainDrainQueue. This is
generated in the call to `emitAsyncMainThreadStart`.
@async_main: This thunk exists to ensure that the main function calls
`exit` at some point so that the runloop stops. It also handles emitting
an error if the user-written main function throws.
e.g:
```
func async_main() async -> () {
do {
try await Main.$main()
exit(0)
} catch {
_errorInMain(error)
}
}
```
Main.$main(): This still has the same behaviour as with the
synchronous case. It just calls `try await Main.main()` and exists to
simplify typechecking.
Main.main(): This is the actual user-specified main. It serves the same
purpose as in the synchronous, allowing the programmer to write code,
but it's async!
The control flow in `emitFunctionDefinition` is a little confusing (to
me anyway), so here it is spelled out:
If the main function is synchronous, the `constant.kind` will be a
`SILDeclRef::Kind::EntryPoint`, but the `decl` won't be async, so it
drops down to `emitArtificalTopLevel` anyway.
If the main function is async and we're generating `@main`, the
`constant.kind` will be `SILDeclRef::Kind::AsyncEntryPoint`, so we also
call `emitArtificalTopLevel`. `emitArtificalTopLevel` is responsible for
detecting whether the decl is async and deciding whether to emit code to
extract the argc/argv variables that get passed into the actual main
entrypoint to the program. If we're generating the `@async_main` body,
the kind will be `SILDeclRef::Kind::EntryPoint` and the `decl` will be
async, so we grab the mainEntryPoint decl and call
`emitAsyncMainThreadStart` to generate the wrapping code.
Note; there is a curious change in `SILLocation::getSourceLoc()`
where instead of simply checking `isFilenameAndLocation()`, I change it
to `getStorageKind() == FilenameAndLocationKind`. This is because the
SILLocation returned is to a FilenameAndLocationKind, but the actual
storage returns true for the call to `isNull()` inside of the
`isFilenameAndLocation()` call. This results in us incorrectly falling
through to the `getASTNode()` call below that, which asserts when asked
to get the AST node of a location.
I also did a little bit of refactoring in the SILGenModule for grabbing
intrinsics. Previously, there was only a `getConcurrencyIntrinsic`
function, which would only load FuncDecls out of the concurrency
module. The `exit` function is in the concurrency shims module, so I
refactored the load code to take a ModuleDecl to search from.
The emitBuiltinCreateAsyncTask function symbol is exposed from
SILGenBuiltin so that it is available from SILGenFunction. There is a
fair bit of work involved going from what is available at the SGF to
what is needed for actually calling the CreateAsyncTask builtin, so in
order to avoid additional maintenance, it's good to re-use that.
The AsyncEntryPoint represents the thunk that is wrapped in a task. This
thunk is used to ensure that the main function explicitly calls "exit",
and to properly unwrap and report any unhandled errors returned from the
user-written main. The function takes on the name `@async_main` in the
emitted SIL.
1. When calculating the differential type of an original function with an inout parameter and when the inout parameter has a type parameter, the inout parameter should get a generic parameter in the subst generic signature of the differential but it currently doesn't. This causes SILGen to attempt to reabstract the differential value in the JVP protocol witness thunk, whilst the generic signature is lacking requirements, leading to a requirement machine error. This patch fixes the calculation so that the JVP's result type (the differential type) always matches the witness thunk's result type.
Wrong type:
```swift
sil private [transparent] [thunk] [ossa] @... <τ_0_0 where τ_0_0 : Differentiable> (...) -> @owned @callee_guaranteed @substituted <τ_0_0, τ_0_1> (@in_guaranteed τ_0_0) -> @out τ_0_1 for <τ_0_0.TangentVector, τ_0_0.TangentVector> {
%6 = differentiable_function_extract [jvp] %5 : $@differentiable(reverse) @convention(method) <τ_0_0 where τ_0_0 : Differentiable> (@in_guaranteed τ_0_0, @noDerivative @inout τ_0_0, @noDerivative SR_13305_Struct) -> () // user: %7
HERE ====> %7 = apply %6<τ_0_0>(%0, %1, %3) : $@convention(method) <τ_0_0 where τ_0_0 : Differentiable> (@in_guaranteed τ_0_0, @inout τ_0_0, SR_13305_Struct) -> @owned @callee_guaranteed @substituted <τ_0_0> (@in_guaranteed τ_0_0) -> @out τ_0_0 for <τ_0_0.TangentVector>
```
Should be:
```swift
%7 = apply %6<τ_0_0>(%0, %1, %3) : $@convention(method) <τ_0_0 where τ_0_0 : Differentiable> (@in_guaranteed τ_0_0, @inout τ_0_0, SR_13305_Struct) -> @owned @callee_guaranteed @substituted <τ_0_0, τ_0_1> (@in_guaranteed τ_0_0) -> @out τ_0_1 for <τ_0_0.TangentVector, τ_0_0.TangentVector>
```
2. `TypeConverter::makeConstantInterfaceType` is not passing down the derivative generic signature to `SILFunctionType::getAutoDiffDerivativeFunctionType` for class methods, and this was caught by RequirementMachine during vtable emission. This patch fixes that.
Partially resolves rdar://82549134. The only remaining tests that require `-requirement-machine=off` are SILOptimizer/semantic_member_accessors_sil.swift and SILOptimizer/differentiation_diagnostics.swift which I will fix next. Then I'll do a proper fix for workaround #39416.
Changed the frontend flag to -enable-experimental-lexical-lifetimes from
-enable-experimental-defined-lifetimes.
Changed the attribute on begin_borrow from [defined] to [lexical].
The new flag will be used to track whether a borrow scope corresponds to
a source-level lexical scope. Here, the flag is just documented, added
to the instruction, represented in textual and serialized SIL, and
cloned.
Support for addresses with arbitrary alignment as opposed to their
element type's natural in-memory alignment.
Required for bytestream encoding/decoding without resorting to memcpy.
SIL instruction flag, documentation, printing, parsing, serialization,
and IRGen.
This is a new instruction that can be used by SILGen to perform a semantic move
in between two entities that are considered separate variables at the AST
level. I am going to use it to implement an experimental borrow checker.
This PR contains the following:
1. I define move_value, setup parsing, printing, serializing, deserializing,
cloning, and filled in all of the visitors as appropriate.
2. I added createMoveValue and emitMoveValueOperation SILBuilder
APIs. createMoveValue always creates a move and asserts is passed a trivial
type. emitMoveValueOperation in contrast, will short circuit if passed a
trivial value and just return the trivial value.
3. I added IRGen tests to show that we can push this through the entire system.
This is all just scaffolding for the instruction to live in SIL land and as of
this PR doesn't actually do anything.
Literal closures are only ever directly referenced in the context of the expression they're written in,
so it's wasteful to emit them at their fully-substituted calling convention and then reabstract them if
they're passed directly to a generic function. Avoid this by saving the abstraction pattern of the context
before emitting the closure, and then lowering its main entry point's calling convention at that
level of abstraction. Generalize some of the prolog/epilog code to handle converting arguments and returns
to the correct representation for a different abstraction level.
Add OwnershipForwardingTermInst::createResult(SILBasicBlock, SILType)
Add SwitchEnumInst::createDefaultResult()
Add SwitchEnumInst::createOptionalSomeResult(), which handles most
compiler-generated switches.
Basic API for creating terminator results with consistent
ownership. This allows enabling OSSA verification on terminator
results. It fixes current issues, but is also a prerequisite for OSSA
simplify-cfg.
For switch_enum, this ensures that the default argument consistently
either forwards the original value, or handles the payload of the
unique case (the unique payload was already being inferred for
ownership, but the block argument was inconsistent with that fact).
switch_enum and checked_cast_br specify their forwarding
ownership. This can differ from their operand ownership.
For example:
%e = enum $Optional<AnyObject>, #Optional.none!enumelt
switch_enum %e : $Optional<AnyObject>,
case #Optional.some!enumelt: bb2...
bb2(%arg : @owned T):
Independent forwarding ownership is only supported with terminators in this
change, but in the near term it will be used for all forwarding
operations to support implicit borrow scopes.
Later stages use the name to disambiguate variables and this amgiguity
can lead to incorrect debug info that crashes LLVM. This also makes
the artificial variable names visible in textual SIL output.
rdar://82313550
This patch replace all in-memory objects of DebugValueAddrInst with
DebugValueInst + op_deref, and duplicates logics that handles
DebugValueAddrInst with the latter. All related check in the tests
have been updated as well.
Note that this patch neither remove the DebugValueAddrInst class nor
remove `debug_value_addr` syntax in the test inputs.
This new SIL di-expression represents the dereference on the SSA value.
Similar to DW_OP_deref in DWARF. It is also going to replace the
existing `debug_value_addr`. Namely, replacing the following
instruction:
```
debug_value_addr %a : $*T, name "my_var"
```
with this one:
```
debug_value %a : $*T, name "my_var", expr op_deref
```