Treating a trivial type as having ownership seems only to confuse the ownership verifier.
The structural property we're trying to enforce here (that a continuation is always
consumed by an `await` locally) can be enforced by flow-sensitive verification without
ownership.
This instructions ensures that all instructions, which need to run on the specified executor actually run on that executor.
For details see the description in SIL.rst.
When casting from existentials to class - and vice versa - it can happen that a cast is not RC identity preserving (because of potential bridging).
This also affects mayRelease() of such cast instructions.
For details see the comments in SILDynamicCastInst::isRCIdentityPreserving().
This change also includes some refactoring: I centralized the logic in SILDynamicCastInst::isRCIdentityPreserving().
rdar://problem/70454804
When lowering the type for `@objc` entry points of async declarations, restore
the original ObjC signature with the completion handler argument in the lowered
SIL type.
It can already only accept values with none ownership and the merging of
ownership around ownership phis ensure that if we phi this with a partial_apply
or the like, we get the appropriate ownership on any such ownership phi values.
We are now out of SILGen emitting fewer destroy_value unnecessarily on
thin_to_thick functions. This changed some codegen and also forced me to update
some tests/fix AutoDiff.
I also deleted the DebugInfo test mandatoryinlining-wrongdebugscope.swift since:
1. It was depending on these destroys being there.
2. Given the need to improve the test @aprantl suggested I just eliminate it
solving the test failure for me.
Compute 'isLet' from the VarDecl that is available when constructing
AccessedStorage so we don't need to recover the VarDecl for the base
later.
This generally makes more sense and is more efficient, but it will be
necessary when we look past class casts when finding the reference root.
...and avoid reallocation.
This is immediately necessary for LICM, in addition to its current
uses. I suspect this could be used by many passes that work with
addresses. RLE/DSE should absolutely migrate to it.
... and use that API in FullApplySite::insertAfterInvocation.
Also change FullApplySite::insertAfterInvocation/insertAfterFullEvaluation to directly pass a SILBuilder instead of just an insertion point to the callback.
This makes more sense (given the function names) and simplifies the usages.
It's a NFC.
```
@_specialize(exported: true, spi: SPIGroupName, where T == Int)
public func myFunc() { }
```
The specialized entry point is only visible for modules that import
using `_spi(SPIGroupName) import ModuleDefiningMyFunc `.
rdar://64993425
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
Because C++ constructors always take a `this` pointer to the object to
be initialized, we mark the SIL function return type with the `@out`
attribute.
On the IRGen side, we retrofit support for formal indirect return values as
well as thin metatypes.