Teach SILGen to emit a -dealloc method that runs user code, destroys
instance variables, and then calls up to the superclass dealloc. Teach
IRGen to deal with Objective-C destructor methods and add -dealloc to
the instance method table.
There are a few things still wrong here: we're emitting both a Swift
destructor and -dealloc, even though only one of them should ever
actually be used. Additionally, instance variables shouldn't be
destroyed in -dealloc, but in .cxx_destruct, so they persist until the
last of the -dealloc methods is invoked.
Swift SVN r12115
We use Objective-C allocation for classes whose root was defined in
Objective-C. Any Swift class whose root is defined in Swift will use
Swift's allocation routines instead.
Plus some minor cleanup in advance of implementing -dealloc.
Swift SVN r12104
General compiler support is missing for 'type' properties on classes, and lets don't
work either, but at least we have a nice diagnostic now.
also, rename static -> type in a few internal diagnostic names.
Swift SVN r12102
In general, this forces SILGen and IRGen code that's grabbing
a declaration to state whether it's doing so to define it.
Change SIL serialization to serialize the linkage of functions
and global variables, which means also serializing declarations.
Change the deserializer to use this stored linkage, even when
only deserializing a declaration, and to call a callback to
inform the client that it has deserialized a new entity.
Take advantage of that callback in the linking pass to alter
the deserialized linkage as appropriate for the fact that we
imported the declaration. This computation should really take
advantage of the relationship between modules, but currently
it does not.
Swift SVN r12090
This is the dual of our initialization story: delay the destruction of
instance variables until after the execution of the superclass
destructor, so that memory safety is preserved even if the superclass
destructor calls a method on teh subclass.
Swift SVN r12089
lvalues. (They're all addresses.) We need to
mark the resulting ManagedValues as lvalues as
well, so that SILGen emits loads for them
correctly.
Swift SVN r12066
In nongeneric contexts, or contexts where we only care about the indirectness of parameters or have already substituted the generic parameters for a function, the interface types are interchangeable, so just switch over.
Swift SVN r12044
Split 'destructive_switch_enum_addr' into separate 'switch_enum_addr' and 'take_enum_data_addr' instructions. This should unblock some optimization work we would like to do with enums.
Swift SVN r12015
Make the compiler fully support both UTF-8 and UTF-16 string
literals. A (standard-library-defined) string type (such as String)
that wants UTF-16 string literals should conform to the
BuiltinUTF16StringLiteralConvertible protocol; one that wants UTF-8
string literals should conform to the BuiltinStringLiteralConvertible
protocol.
Note that BuiltinUTF16StringLiteralConvertible inherits from
BuiltinStringLiteralConvertible, so a string type that wants UTF-16
string literals also has to implement support for UTF-8. The UTF-16
entry point is preferred when the compiler knows that UTF-16 is
supported. This only tends to happen when we have a generic parameter
that is required to conform to StringLiteralConvertible, e.g.,
func f<T: StringLiteralConvertible>() {
var t: T = "Hello, World!" // uses UTF-8 entry point
}
because the UTF-8 entry point is the only one guaranteed to be available.
Swift SVN r12014
Emphasize the fact that this address is only intended for initialization. When we split destructive_switch_enum_addr, there will be another similar instruction for destructively taking the payload out of an already-initialized enum.
Swift SVN r12000
Introduce the SIL instruction peer_method, which references a method
in the given class or one of its superclasses (but not a subclass). It
IRGen's to objc_msgSendSuper[Stret] (vs. super_method IRGen'ing to
objc_msgSendSuper[Stret]2 for superclass lookup).
Use peer_method for initializer delegation to a foreign initializer
(i.e., an init-family method written in Objective-C) to close the
safety loophole introduced by initializer delegation in r11965. The
loophole still exists, but can only be triggered from Objective-C.
Teach definite initialization that peer_method really isn't a use of
self.
Swift SVN r11992
Treat the interface types of SILFunctionTypes as the canonical representation in the verifier. Do a bunch of supporting and annoyingly irreducible work to enable this:
- Stop trying to uncurry generic parameter lists during type lowering and preserve the structure of AST GenericParamLists. This makes mapping dependent types into contexts easier.
- Properly walk generic parameter lists at all depths when grooming substitution vectors for use with substGenericArgs interfaces.
- Reseat the generic parameter lists created for protocol_method results so that we don't expect the outer Self archetype to be unbound; it's provided by the extra data of the result.
- Hack SILFunctionType serialization never to use a decl reference when serializing its generic param list. When this happens, we get incorrect archetypes. This is a gross hack, but when we're able to jump all the way to interface types, it can go away.
Putting these ducks in a row nicely un-XFAILs TextFormatting.swift.
Swift SVN r11989
While we're here, cache the result of looking for delegation or
chaining calls within ConstructorDecl. Only Sema and SILGen for the
body of the constructor care, so we don't serialize this
information. Rather, we have a faster-path to recompute it should
someone ask again after it was cached.
Swift SVN r11969
Initiializer delegation in Swift always calls a peer initializer
directly. However, there are no direct calls for methods defined in
Objective-C, so go through Objective-C's message send. This is a
potential safety hole, because we could end up in a subclass's
initializer.
Swift SVN r11965
Much of the fun here comes from the need to delegate to the allocating
constructor for structs and enums (which have no initializing
constructors). The AST doesn't (and shouldn't) know about this, so
SILGen has to turn cope with the transformation.
Swift SVN r11949
As with chaining initialization ('super.init' calls), wrapping the
delegating initialization in RebindSelfInConstructorExpr ensures that
'self' gets overwritten by the result of delegation.
Note that I'd much prefer that RebindSelfInConstructorExpr be
introduced by the type checker (not the parser). That cleanup will
follow.
Swift SVN r11932
as ::copy, but doesn't have the assertion that the copied-from
value has a cleanup associated with it. Various bits of silgen
are trafficing in SILValue's when they are known to be live, and
this allows us to use the centralized "copy" instead of rolling
it ourselves inline.
Swift SVN r11929
This is step 1 of implementing the new Container/Sequence/Stream
protocols. See test/Prototypes/Container.swift for the complete picture
of where this is headed.
Swift SVN r11924
SIL instruction. Implement IR-gen support for same. Fix
the parsing of SIL string literals to properly unescape them.
SIL-gen still emits UTF8 literals unconditionally.
Swift SVN r11904
- Change the AST for get/set functions to take self @inout only when they
are @mutating. Setters default to @mutating, but can be explicitly marked
@!mutating. Getters default to not mutating, but can be marked @mutating.
This causes self to follow.
- Change sema to handle semantic analysis of a.y (and subscripts) based on
whether the computed type of a allows mutation (which is when 'a' is an
lvalue, or both the getter and setter are non-mutating). When both of
these conditions fail, 'a.y' has rvalue type, and is thus non-mutable.
- Rework silgen of lvalues to handle this: now properties and subscripts
can have rvalues as bases, which means that all the lvalue machinery needs
to be able to handle the full generality of base expressions (which is
what my recent patches have been paving the way towards).
- Rework silgen of rvalues to similarly handle rvalue bases.
- Rework silgen of both to handle the case where the AST has found a base
expression that is an lvalue, but where only a non-mutating getter or
setter is needed. Right now, we just emit a load of the lvalue, but
it would result in better code to not require the base be an lvalue at
all (todo).
The upshot of all of this is that we are doing *much* less AST-level
materialization (MaterializeExpr goes down), we generate a lot better SIL
out of SILGen in many cases, and 'self' being an rvalue in properties and
subscripts means that we correctly reject code like the examples in
test/Sema/immutability.swift.
Swift SVN r11884
making LValue ManagedValues, and switch SILGenLValue to use
this form of managed value consistently for lvalues, instead of
using unmanaged values in some cases. NFC.
Swift SVN r11878
For a witness to a generic requirement, the generic parameters of the requirement should be parented to the generic parameters of the conformance, not to the 'Self' parameter list of the original protocol. The generic signature conversion in SILFunctionType construction revealed this improper nesting because it was introducing unused "$T_0_0" parameters into witnesses in nongeneric conformances.
Swift SVN r11861
the things that apparently care about it. The LValue/RValue machinery is
happy to pass around the VarDecl/SubscriptDecl for the entity being
referenced, and this simplifies things.
Swift SVN r11857