This is a preliminary step towards enabling default initialization of
init accessor properties in user-defined initializers because this logic
would have to be shared by multiple places during SILGen.
Without this, we emit a copy of noncopyable type error since we do not insert a
mark_must_check on lazily initialized global initializers.
rdar://111402912
`Initialization` is stateful and not meant to be emitted into multiple times across different contexts.
If emitting into an initialization causes it to be split or aborted, that will carry over into
further uses of the initialization. This was happening during `if` and `switch` expression
emission, leading to miscompiles or compiler crashes. Fix this by saving only the buffer when
we prepare emission for a statement expression, and creating the initialization in the scope
where the expression for a branch actually gets emitted. Fixes rdar://112213253.
When we emit closure literals in the context of a generic parameter, the parameters of the
closure may be more abstract than they would normally be for the closure's abstract type.
We handled this by reabstracting value parameters to their usual substituted representation
in the prolog, but neglected to do so for `inout` parameters too. In this case, we need to take
the initial value, reabstract it to provide a local variable with the substituted representation,
and then take the final value, reabstract it back, and write back to the original inout parameter
on function exit.
Fixes rdar://111563642.
Implement "init accessor" component emission which is paired with
"init accessor" write strategy. Use `SILUndef` for a "setter" operand
of an "assign_or_init" instruction in cases when property with init
accessor doesn't have a setter. DI would detect re-initialization
attempts to produce diagnostics.
stated in the original source.
If an extension macro can introduce protocol conformances, macro expansion
will check which of those protocols already have a stated conformance in the
original source. The protocols that don't will be passed as arguments to
extension macro expansion, indicating to the macro that it should only add
conformances to those protocols.
Attribute @_silgen_name is today only allowed to be used on functions, this change allows usage on globals as well. The motivation for that is to be able to "forward declare" globals just like it's today possible to do with functions (for the cases where it's not practical or convenient to use a bridging header).
Separately, this change also adds a @_silgen_name(raw: ...) syntax, which simply avoids mangling the name (by using the \01 name prefix that LLVM uses). The motivation for that is to be able to reference the "magic Darwin linker symbols" that can be used to look up section bounds (in the current dylib/module) -- those symbols don't use the underscore prefix in their mangled names.
The `bare` attribute indicates that the object header is not used throughout the lifetime of the object.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
Instead of dealing with substitutions during raw SIL lowering,
let's produce a partial apply without argument to produce a
substituted reference that could be used by SILVerifier and
raw SIL lowering stages.
Per the clarification during the review thread, all properties with
init accessors (including those that do not initialize any underlying
storage) are part of the memberwise initializer.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Macro-generated extensions are hoisted to file scope, because extensions are
not valid in nested scopes. Callers of 'visitAuxiliaryDecls' assume that the
auxiliary decls are in the same decl context as the original, which is clearly
not the case for extensions, and it leads to issues like visiting extension at
the wrong time during SILGen. The extensions are already added to the top-level
decls, so we don't need to visit them as auxiliary decls, and we can type-check
macro-expanded decls at the end of visitation in TypeCheckDeclPrimary.
The previous lazy discovery did not always work because sometimes a debug_value
is emitted before the first SIL instruction in the variable's scope.
rdar://110841130
variadic-tuple results. There are three parts to this.
First, fix the emission of indirect result parameters to do a
proper abstraction-pattern-aware traversal of tuple patterns.
There was a FIXME here and everything.
Second, fix the computation of substituted abstraction
patterns to properly handle vanishing tuples. The previous code
was recursively destructuring tuples, but only when it saw a
tuple as the substituted type, which of course breaks on vanishing
tuples.
Finally, fix the emission of returns into vanishing tuple
patterns by allowing the code to not produce a TupleInitialization
when the tuple pattern vanishes. We should always get a singleton
element initializer in this case.
Fixes rdar://109843932, plus a closely-related test case for
vanishing tuples that I added myself.
Skip stored properties that are initialized via init accessors and
emit parameters/initializations in field order which allows us to
cover more use-cases.
If some property is initializable by one than one init accessor
let's not sythesize a memberwise initializer in that case because
it's ambiguous what is the best init accessor to use.
If init accessor initialize the same properties, let's emit them
in sequence and emit `destroy_addr` in-between to make sure that
there is no double initialization.
When emitting the underlying `switch` statement
for a `switch` expression, we emit an `unreachable`
if the subject is uninhabited. Statement emission
code can handle this, but expression emission expects
an RValue to handed back. To remedy this, emit
an unreachable block that we can emit the rest of
the expression emission code into. The SILOptimizer
will then drop this unreachable block.
This source location will be used to determine whether to add a name lookup
option to exclude macro expansions when the name lookup request is constructed.
Currently, the source location argument is unused.