Their definition is fully visible to clients to be copied into them, and there isn't necessarily
a symbol for the property descriptor in the defining module, so it isn't necessary or desirable to
try to use a property descriptor with them. Trying to reference the descriptor leads to missing
symbol errors at load time when trying to use keypaths with older versions of the defining dylib,
which goes against the purpose of `@_alwaysEmitIntoClient` meaning "no ABI liabilities for the
defining module". Fixes rdar://94049160.
Instead of asking SILGen to build calls to `makeIterator` and
`$generator.next()`, let's synthesize and type-check them
together with the rest of for-in preamble. This greatly simplifies
interaction between Sema and SILGen for for-in statements.
An `@objc` interface defined from Swift may have a formal type in terms of its
Swift bridged types, but we want to lower the SIL-level completion handler
implementation according to the actual ObjC types that will be passed at runtime.
Fixes rdar://93112430
The callers to ConversionInitialization::tryPeephole assume that, if the conversion peephole
succeeded, that the peepholed result was fully emitted into the initialization. However, if
the ConversionInitialization sat on top of an in-memory initialization, then tryPeephole would
only set the value of the ConversionInitialization, without forwarding the value into the underlying
initialization, causing code generation to proceed leaving the underlying memory uninitialized.
This problem becomes exposed now when literal closures are emitted with a return value that is
indirectly returned and also reabstracted, and the return expression undergoes a ping-pong reabstraction
pair: we see through the conversions and peephole away the reabstractions, but fail to emplace the
result in the indirect return slot.
Fixes rdar://92654098
Closure literals are sometimes type-checked as one type then immediately converted to another
type in the AST. One particular case of this is when a closure body never throws, but the closure
is used as an argument to a function that takes a parameter that `throws`. Emitting this naively,
by emitting the closure as its original type, then converting to throws, can be expensive for
async closures, since that takes a reabstraction thunk. Even for non-async functions, we still want
to get the benefit of reabstraction optimization for the closure literal through the conversion too.
So if the function conversion just add `throws`, emit the closure as throwing, and pass down the
context abstraction pattern when emitting the closure as well.
when two objc async functions are composed with each other,
i.e., f(g()), then the clean-ups for g() would get emitted
at an unexpected time, namely, during the suspension for
the call to f(). This means that using a clean-up to emit
the executor-hop breadcrumb was incorrect. The hop could
appear between a get_async continuation and its matching
await_continuation, which is an unsupported nested suspension.
This commit fixes that by removing the use of the breadcrumb
clean-up in favor of providing that breadcrumb directly to
the result plan, so that it may be emitted later on when the
result plan sees fit.
Fixes rdar://91502776
This reverts commit 01d470ce32.
Just to be safe, I'm reverting this part of https://github.com/apple/swift/pull/41571
as well, until it can be reimplemented in light of issues where a hop
can appear between a get_continuation and an await_continuation
resolves rdar://91502776
This reverts commit afd26d3974 to solve
a critical miscompile caused by a hop_to_executor appearing between
a get_continuation and await_continuation instruction in SIL.
A reimplementation of SR-15703 will be forthcoming.
Fixes rdar://91502776
- Add a `[reflection]` bit to `alloc_box` instructions, to indicate that a box
should be allocated with reflection metadata attached.
- Add a `@captures_generics` attribute to SILLayouts, to indicate a type layout
that captures the generic arguments it's substituted with, meaning it can
recreate the generic environment without additional ABI-level arguments, like
a generic partial application can.
Previously, the AbstractionPattern that was used for the value
"returned" (i.e. via a completion handler) from ObjC mostly (but not
quite always) was "type".
The generated completion handler correctly (because this is required in
order to call _resumeUnsafeContinuation) reabstracted the block (e.g.
from @convention(block) to @substituted <T> () -> @out T for <()>). The
callee of the ObjC function, however, loaded the function from the block
as if it were not reabstracted (e.g. () -> ()).
On most platforms, that happened to work. On arm64e, that difference in
types caused in a difference in pointer signing, resulting in a failure
at runtime.
rdar://85526879
rdar://85526916
Stop pretending that an optional requirement is immutable via the `StorageImplInfo` request.
This approach has lead astray the conformance checker and may have had a negative impact
on other code paths, and it doesn't work for imported declarations because they bypass the
request. Instead, use a forwarding `AbstractStorageDecl::isSettableInSwift` method
that special-cases optional requirements.
Added an AST helper in Types.h:
- isPotentiallyAnyObject()
This formalizes logic for when cast operations forward
ownership. Various OSSA optimization rely on this for
correctness. This fixes latent bugs throughout the optimizer.
I was compelled to fix this now because we want to make OSSA
optimizations across dynamic casts more aggressive. For example, we
want to optimize retain/release across enum formation.