Bail if the closure captures an ObjectiveC block which might _not_ be copied onto the heap, i.e optimized by SimplifyCopyBlock.
We can't do this because the optimization inserts retains+releases for captured arguments.
That's not possible for stack-allocated blocks.
Fixes a mis-compile
rdar://154241245
Handle the presence of mark_dependence instructions after a begin_apply.
Fixes a compiler crash:
"copy of noncopyable typed value. This is a compiler bug. ..."
Extract the special pattern matching logic that is otherwise unrelated to the
check() function. This makes it obvious that the implementation was failing to
set the 'changed' flag whenever needed.
This pass replaces `alloc_box` with `alloc_stack` if the box is not escaping.
The original implementation had some limitations. It could not handle cases of local functions which are called multiple times or even recursively, e.g.
```
public func foo() -> Int {
var i = 1
func localFunction() { i += 1 }
localFunction()
localFunction()
return i
}
```
The new implementation (done in Swift) fixes this problem with a new algorithm.
It's not only more powerful, but also simpler: the new pass has less than half lines of code than the old pass.
The pass is invoked in the mandatory pipeline and later in the optimizer pipeline.
The new implementation provides a module-pass for the mandatory pipeline (whereas the "regular" pass is a function pass).
This is required because the mandatory pass needs to remove originals of specialized closures, which cannot be done from a function-pass.
In the old implementation this was done with a hack by adding a semantic attribute and deleting the function later in the pipeline.
I still kept the sources of the old pass for being able to bootstrap the compiler without a host compiler.
rdar://142756547
* add `cloneFunctionBody` without an `entryBlockArguments` argument
* remove the `swift::ClosureSpecializationCloner` from the bridging code and replace it with a more general `SpecializationCloner`
Originally this was a "private" utility for the ClosureSpecialization pass.
Now, make it a general utility which can be used for all kind of function specializations.
OSSA lifetime canonicalization can take a very long time in certain
cases in which there are large basic blocks. to mitigate this, add logic
to skip walking the liveness boundary for extending liveness to dead
ends when there aren't any dead ends in the function.
Updates `DeadEndBlocks` with a new `isEmpty` method and cache to
determine if there are any dead-end blocks in a given function.
Ideally we'd be able to use the llvm interleave2 and deinterleave2
intrinsics instead of adding these, but deinterleave currently isn't
available from Swift, and even if you hack that in, the codegen from
LLVM is worse than what shufflevector produces for both x86 and arm. So
in the medium-term we'll use these builtins, and hope to remove them in
favor of [de]interleave2 at some future point.
LifetimeDependenceInsertion inserts mark_dependence on token result of a begin_apply
when it yields a lifetime dependent value. When such a begin_apply gets inlined,
the inliner can crash because of the remaining uses of the token result.
Fix this by inserting mark_dependence on parameter operands that are lifetime dependence sources
and deleting the mark_dependence on token results in the inliner.
Fixes rdar://151568816
The reason I am doing this is that we have gotten reports about certain test
cases where we are emitting errors about self being captured in isolated
closures where the sourceloc is invalid. The reason why this happened is that
the decl returned by getIsolationCrossing did not have a SourceLoc since self
was being used implicitly.
In this commit I fix that issue by using SIL level information instead of AST
level information. This guarantees that we get an appropriate SourceLoc. As an
additional benefit, this fixed some extant errors where due to some sort of bug
in the AST, we were saying that a value was nonisolated when it was actor
isolated in some of the error msgs.
rdar://151955519
Defer visiting an instruction until its operands have been visited. Otherwise,
this pass will crash during ownership verification with invalid operand
ownership.
Fixes rdar://152879038 ([moveonly] MoveOnlyWrappedTypeEliminator ownership
verifier crashes on @_addressableSelf)
* re-implement the pass in swift
* support alloc_stack liveranges which span over multiple basic blocks
* support `load`-`store` pairs, copying from the alloc_stack (in addition to `copy_addr`)
Those improvements help to reduce temporary stack allocations, especially for InlineArrays.
rdar://151606382
We are going to need to add more flags to the various checked cast
instructions. Generalize the CastingIsolatedConformances bit in all of
these SIL instructions to an "options" struct that's easier to extend.
Precursor to rdar://152335805.
When using a densemap subscript expression on both sides of an
assignment in the same statement of the same map we run into the issue
that the map can reallocate because of the assignment but we are
referencing the value of the RHS map subscript by reference --
i.e we can reference deallocated memory.
Not good.
My attempts at making a reproducer crash failed.
rdar://151031297
When creating a tuple, the type needs to be specified because otherwise, if the original tuple has labels, it will cause a type mismatch verification error.
rdar://152588539
A destroy of an `init_enum_data_addr` is not equivalent to a destroy of
the whole enum's address. Treat such destroys just like destroys of
`struct_element_addr`s are treated: by bailing out.
rdar://152431332
In this case, what is happening is that in SILGen, we insert implicit
DistributedActor.asLocalActor calls to convert a distributed actor to its local
any Actor typed form. The intention is that the actor parameter and result are
considered the same... but there is nothing at the SIL level to enforce that. In
this commit, I change ActorInstance (the utility that defines actor identity at
a value level) to look through such a call.
I implemented this by just recognizing the decl directly. We already do this in
parts of SILGen, so I don't really see a problem with doing this. It also
provides a nice benefit that we do not have to modify SILFunctionType to
represent this or put a @_semantic attribute on the getter.
NOTE: Generally, Sema prevents us from mixing together different actors. In this
case, Sema does not help us since this call is inserted implicitly by the
distributed actor implementation in SILGen. So this is not a problem in general.
rdar://152436817
[send-non-sendable] Recurse to the full underlying value computation instead of just the object one when computing the underlying object of an address.
If there is a "constant" enum argument to a synthesized enum comparison, we can always inline it, because most of it will be constant folded anyway.
This ensures the compiler is not creating terrible code for very simple enum comparisons, like
```
if someEnum == .someCase {
...
}
```
rdar://85677499
Consider an `@_alwaysEmitIntoClient` function and a custom derivative
defined
for it. Previously, such a combination resulted different errors under
different
circumstances.
Sometimes, there were linker errors due to missing derivative function
symbol -
these occurred when we tried to find the derivative in a module, while
it
should have been emitted into client's code (and it did not happen).
Sometimes, there were SIL verification failures like this:
```
SIL verification failed: internal/private function cannot be serialized or serializable: !F->isAnySerialized() || embedded
```
Linkage and serialization options for the derivative were not handled
properly,
and, instead of PublicNonABI linkage, we had Private one which is
unsupported
for serialization - but we need to serialize `@_alwaysEmitIntoClient`
functions
so the client's code is able to see them.
This patch resolves the issue and adds proper handling of custom
derivatives
of `@_alwaysEmitIntoClient` functions. Note that either both the
function and
its custom derivative or none of them should have
`@_alwaysEmitIntoClient`
attribute, mismatch in this attribute is not supported.
The following cases are handled (assume that in each case client's code
uses
the derivative).
1. Both the function and its derivative are defined in a single file in
one module.
2. Both the function and its derivative are defined in different files
which
are compiled to a single module.
3. The function is defined in one module, its derivative is defined in
another
module.
4. The function and the derivative are defined as members of a protocol
extension in two separate modules - one for the function and one for the
derivative. A struct conforming the protocol is defined in the third
module.
5. The function and the derivative are defined as members of a struct
extension in two separate modules - one for the function and one for the
derivative.
The changes allow to define derivatives for methods of `SIMD`.
Fixes#54445
<!--
If this pull request is targeting a release branch, please fill out the
following form:
https://github.com/swiftlang/.github/blob/main/PULL_REQUEST_TEMPLATE/release.md?plain=1
Otherwise, replace this comment with a description of your changes and
rationale. Provide links to external references/discussions if
appropriate.
If this pull request resolves any GitHub issues, link them like so:
Resolves <link to issue>, resolves <link to another issue>.
For more information about linking a pull request to an issue, see:
https://docs.github.com/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
-->
<!--
Before merging this pull request, you must run the Swift continuous
integration tests.
For information about triggering CI builds via @swift-ci, see:
https://github.com/apple/swift/blob/main/docs/ContinuousIntegration.md#swift-ci
Thank you for your contribution to Swift!
-->
Implements SE-0460 -- the non-underscored version of @specialized.
It allows to specify "internal" (not abi affecting) specializations.
rdar://150033316
Introduce a new pass MandatoryTempRValueElimination, which works as the original TempRValueElimination, except that it does not remove any alloc_stack instruction which are associated with source variables.
Running this pass at Onone helps to reduce copies of large structs, e.g. InlineArrays or structs containing InlineArrays.
Copying large structs can be a performance problem, even at Onone.
rdar://151629149
Otherwise, depending on the exact value that we perform the underlying look up
at... we will get different underlying values. To see this consider the
following SIL:
```sil
%1 = alloc_stack $MyEnum<T>
copy_addr %0 to [init] %1
%2 = unchecked_take_enum_data_addr %1, #MyEnum.some!enumelt
%3 = load [take] %2
%4 = project_box %3, 0
%5 = load_borrow %4
%6 = copy_value %5
```
If one were to perform an underlying object query on %4 or %3, one would get
back an underlying object of %1. In contrast, if one performed the same
operation on %5, then one would get back %3. The reason why this happens is that
we first see we have an object but that it is from a load_borrow so we need to
look through the load_borrow and perform the address underlying value
computation. When we do that, we find project_box to be the value. project_box
is special since it is the only address base we ever look through since from an
underlying object perspective, we want to consider the box to be the underlying
object rather than the projection. So thus we see that the result of the
underlying address computation is that the underlying address is from a load
[take]. Since we then pass in load [take] recursively into the underlying value
object computation, we just return load [take]. In contrast, the correct
behavior is to do the more general recurse that recognizes that we have a load
[take] and that we need to look through it and perform the address computation.
rdar://151598281
This prevents simplification and SILCombine passes to remove (alive) `mark_dependence_addr`.
The instruction is conceptually equivalent to
```
%v = load %addr
%d = mark_dependence %v on %base
store %d to %addr
```
Therefore the address operand has to be defined as writing to the address.