package-wide resilience domain if Package CMO is enabled.
The purpose of the attribute includes:
- Indicates that certain types such as loadable types are
allowed in serialized functions in resiliently built module
if the optimization is enabled, which are otherwise disallowed.
- Used during SIL deserialization to determine whether such
functions are allowed.
- Used to determine if a callee can be inlined into a caller
that's serialized without package-cmo, e.g. with an explicit
annotation like @inlinable, where the callee was serialized
due to package-cmo.
Resolves rdar://127870822
module when package serialization is enabled, return maximal resilience expansion
in SILFunction::getResilienceExpansion(). This allows aggregate types to be generated
as loadable SIL types which otherwise are address-only in a serialized function.
During type lowering, opaque flag setting is also skipped if package serialization
is enabled.
Resolves rdar://127400743
enabled. If two modules are in the same package and package cmo is enabled,
v-table or witness-table calls should not be generated at the use site in the
client module. Modified conformance serialization check to allow serializing
witness thunks.
Also reordered SIL functions bottom-up so the most nested referenced functions
can be serialized first. Allowed serializing a function if a shared definition
(e.g. function `print`). Added a check for resilient mode wrt struct instructions.
Added tests for SIL tables and resilient mode on/off.
rdar://124632670
* Add a new flag -experimental-package-cmo that requires -experimental-allow-non-resilient-access.
* Support serializing package decls for CMO in package if enabled.
* Only applies to default mode CMO.
* Unlike the existing CMO, package CMO can be built with -enable-library-evolution as package
modules are required to be built together in the same project.
* Create hasPublicOrPackageVisibility to opt in for package decls; needed for CMO, SILVerifier,
and other call sites that verify or determine codegen.
Resolves rdar://121976014
Ad-hoc requirements are now obsolete by making `remoteCall`,
`record{Argument, ReturnType}`, `decodeNextArgument` protocols
requirements and injecting witness tables for `SerializationRequirement`
conformances during IRGen.
In preparation for inserting mark_dependence instructions for lifetime
dependencies early, immediately after SILGen. That will simplify the
implementation of borrowed arguments.
Marking them unresolved is needed to make OSSA verification
conservative until lifetime dependence diagnostics runs.
Decls with a package access level are currently set to public SIL
linkages. This limits the ability to have more fine-grained control
and optimize around resilience and serialization.
This PR introduces a separate SIL linkage and FormalLinkage for
package decls, pipes them down to IRGen, and updates linkage checks
at call sites to include package linkage.
Resolves rdar://121409846
access level for optimization: `public`. It requires an extra check for
the actual access level that was declared when determining serialization
since the behavior should be different.
This PR sets its effective access level to `package` as originally defined,
updates call sites to make appropriate acces level comparisons, and removes
`package` specific checks.
The dependent 'value' may be marked 'nonescaping', which guarantees that the
lifetime dependence is statically enforceable. In this case, the compiler
must be able to follow all values forwarded from the dependent 'value', and
recognize all final (non-forwarded, non-escaping) use points. This implies
that `findPointerEscape` is false. A diagnostic pass checks that the
incoming SIL to verify that these use points are all initially within the
'base' lifetime. Regular 'mark_dependence' semantics ensure that
optimizations cannot violate the lifetime dependence after diagnostics.
Fixes a compiler crash in case a private global is only reference from another global variable, for example:
```
private var g1 = 27
let g2 = UnsafePointer(&g1)
```
rdar://117189962
- Add a flag to the serialized module (IsEmbeddedSwiftModule)
- Check on import that the mode matches (don't allow importing non-embedded module in embedded mode and vice versa)
- Drop TBD support, it's not expected to work in embedded Swift for now
- Drop auto-linking backdeploy libraries, it's not expected to backdeploy embedded Swift for now
- Drop prespecializations, not expected to work in embedded Swift for now
- Use CMO to serialize everything when emitting an embedded Swift module
- Change SILLinker to deserialize/import everything when importing an embedded Swift module
- Add an IR test for importing modules
- Add a deserialization validation test
And replace them with explicit `metatype` instruction in the entry block.
This allows such metatype instructions to be deleted if they are dead.
This was already done for performance-annotated functions. But now do this for all functions.
It is essential that performance-annotated functions are specialized in the same way as other functions.
Because otherwise it can happen that the same specialization has different performance characteristics in different modules.
And it's up to the linker to select one of those ODR functions when linking.
Also, dropping metatype arguments is good for performance and code size in general.
This change also contains a few bug fixes for dropping metatype arguments.
rdar://110509780
When a specialization is created, in the original function, releases are
added in two different places:
(1) `ClosureSpecCloner::populateCloned`
(2) `rewriteApplyInst`
In the former, releases are added for closures which are guaranteed or
trivial noescape (but with owned convention).
In the latter, releases are added for closures that are owned.
Previously, when emitting releases at (2), whether the closure was
trivial noescape wasn't considered. The result was inserting the
releases twice, an overrelease.
Here, fix (2) to recognize trivial noescape as not +1.
rdar://110115795
When a specialization is created, in the original function, releases are
added in two different places:
(1) `ClosureSpecCloner::populateCloned`
(2) `rewriteApplyInst`
In the former, releases are added for closures which are guaranteed or
trivial noescape (but with owned convention).
In the latter, releases are added for closures that are owned.
Previously, when emitting releases at (2), whether the closure was
trivial noescape wasn't considered. The result was inserting the
releases twice, an overrelease.
Here, fix (2) to recognize trivial noescape as not +1.
rdar://110058964
For now, disable specialization when it would result in adding
releases to readnone, readonly, or releasenone functions.
Fixes rdar://105887096
TODO: A @noescape closure should never be converted to an @owned
argument regardless of the function attribute.
It's need to correctly maintain dependencies from an open-existential instruction to a `keypath` instruction which uses the opened type.
Fixes a SILVerifier crash.
rdar://105517521
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
This attribute indicates that the given SILFunction has to be
added to "accessible functions" section and could be looked up
at runtime using a special API.