* rename "Name" to "Description" in the pass definition, because it's not really the pass name, but the description of a pass
* remove the getName() from Transforms (which actually returned the description of a pass)
* in debug printing, print the pass ID and not the pass description. It makes it easier to correlate the debug output to the actual pass implementation.
* remove the iteration numbering in the pass manager, because we only run a single iteration anyway.
This commit is mostly refactoring.
*) Introduce a new OptimizationMode enum and use that in SILOptions and IRGenOptions
*) Allow the optimization mode also be specified for specific SILFunctions. This is not used in this commit yet and thus still a NFC.
Also, fixes a minor bug: we didn’t run mandatory IRGen passes for functions with @_semantics("optimize.sil.never")
Recent changes that eliminated the -sil-serialize-all mode and adding this check to IRGen allow us to get rid of ExternalFunctionDefinitionsElimination and ExternalDefsToDecls passes, which are not needed anymore.
In the crash output 'While running pass #x SILFunctionTransform "T" on SILFunction "@F".' we printed the previous function which was handled by the pass instead of the current one.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
This patch implements collection and dumping of statistics about SILModules, SILFunctions and memory consumption during the execution of SIL optimization pipelines.
The following statistics can be collected:
* For SILFunctions: the number of SIL basic blocks, the number of SIL instructions, the number of SIL instructions of a specific kind, duration of a pass
* For SILModules: the number of SIL basic blocks, the number of SIL instructions, the number of SIL instructions of a specific kind, the number of SILFunctions, the amount of memory used by the compiler, duration of a pass
By default, any collection of statistics is disabled to avoid affecting compile times.
One can enable the collection of statistics and dumping of these statistics for the whole SILModule and/or for SILFunctions.
To reduce the amount of produced data, one can set thresholds in such a way that changes in the statistics are only reported if the delta between the old and the new values are at least X%. The deltas are computed as using the following formula:
Delta = (NewValue - OldValue) / OldValue
Thresholds provide a simple way to perform a simple filtering of the collected statistics during the compilation. But if there is a need for a more complex analysis of collected data (e.g. aggregation by a pipeline stage or by the type of a transformation), it is often better to dump as much data as possible into a file using e.g. -sil-stats-dump-all -sil-stats-modules -sil-stats-functions and then e.g. use the helper scripts to store the collected data into a database and then perform complex queries on it. Many kinds of analysis can be then formulated pretty easily as SQL queries.
Originally, I was going to update DI at the same time for ownership and to fix
the multiple-projectbox di bug. After a bit messing with it, it is a difficult
change to land due to the size. Instead, I am going to do the ownership update
first and then loop back around and then fix the DI bug.
rdar://31521023
This is very beneficial because many class_method/witness_method instructions may get concrete types after specialization. Doing it this way improves compilation times.
This is a separate optimization that detects short-lived temporaries that can be eliminated.
This is necessary now that SILGen no longer performs basic RValue forwarding in some cases.
SR-5508: Performance regression in benchmarks caused by removing SILGen peephole for LoadExpr in +0 context
This patch is supposed to recover the performance regressions that would be introduced by yet to be merged PR #9145, which introduces custom, more efficient array iterators.
The crucial part of this patch is running loop unrolling also during the mid-level optimizations phase, because it may catch more loops with constant trip counts. To make trip counts constant, an additional run of constant propagation is helpful.
A pass has an ID (C++ identifier), Tag (shell identifier),
and Name (human identifier).
Command line options that identify passes should obviously be compatibile with
with the pass' command line identifier. This is also what the user is used to
typing for the -debug-only option.
In raw SIL, access markers are unconditionally retained. In canonical SIL,
markers are still removed prior to optimization.
A new flag, -sil-optimized-access-markers, allows testing access markers in
optimized builds, but it is not yet fully supported.
This consists of just removing support from OME for ensuring that all uses of a
box go through the project_box that has as its user a mark_uninitialized. Since
the lowering of mark_uninitialized onto the relevant project_box is done by
MarkUninitializedFixup pass, I can just rip out the hacks from the OME!
rdar://31521023
I put in a simple fixup pass (MarkUninitializedFixup) for staging purposes. I
don't expect it to be in tree long. I just did not feel comfortable fixing up in
1 commit all of the passes up to DI.
rdar://31521023
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
I am going to run it very early and use it to ensure that extra copies due to my
refactoring of SILGenPattern do not cause COW copies to be introduced.
For now, it does a very simple optimization, namely, it eliminates a copy_value,
with only a destroy_value user on a guaranteed parameter.
It is now disabled behind a flag.
if the argument is an array literal.
For example:
arr += [1, 2, 3]
is replaced by:
arr.append(1)
arr.append(2)
arr.append(3)
This gives considerable speedups up to 10x (for our micro-benchmarks which test this).
This is based on the work of @ben-ng, who implemented the first version of this optimization (thanks!).
This is important in case the inline restarts the pass pipeline.
In a sub-sequent invocation of the inlined it should receive a cleaned-up function so that it can make better estimations for further inlining.
As a compensation, reduce the caller-block limit of the inliner.
And add an overall block limit which is also taken into account for always-inline functions.
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
Print the SIL function body on an assert. Recovering the SIL code is the
critical path for pretty much any SIL development. The only alternative is
rebuilding the library with string matching or building a debug compiler and
hoping lldb works. The standard library takes a very long time to build with a
debug compiler.