This commit just introduces the instruction. In a subsequent commit, I am going
to add support to SILGen to emit this. This ensures that when we assign into a
tuple var we initialize it with one instruction instead of doing it in pieces.
The problem with doing it in pieces is that when one is emitting diagnostics it
looks semantically like SILGen actually is emitting code for initializing in
pieces which could be an error.
In the C++ sources it is slightly more convenient to dump to stderr than
to print to stdout, but it is rather more unsightly to print to stderr
from the Swift sources. Switch to stdout. Also allows the dump
functions to be marked debug only.
Function bodies are skipped during typechecking when one of the
-experimental-skip-*-function-bodies flags is passed to the frontend. This was
implemented by setting the "body kind" of an `AbstractFunctionDecl` during decl
checking in `TypeCheckDeclPrimary`. This approach had a couple of issues:
- It is incompatible with skipping function bodies during lazy typechecking,
since the skipping is only evaluated during a phase of eager typechecking.
- It prevents skipped function bodies from being parsed on-demand ("skipped" is
a state that is distinct from "parsed", when they ought to be orthogonal).
This needlessly prevented complete module interfaces from being emitted with
-experimental-skip-all-function-bodies.
Storing the skipped status of a function separately from body kind and
requestifying the determination of whether to skip a function solves these
problems.
Resolves rdar://116020403
Link.cpp started pulling in the macros from RuntimeFunctions.def, which
do not include memory effects on main, but do on rebranch. This resulted
in build failures due to extra parameters to the macro function.
After serialization, we no longer need to enforce the resilience
boundary between inlinable and non-inlinable functions, so we
make a pass over the SIL to clear [serialized] flags and
substitute any opaque return types.
The logic for AST types was wrong; we can't just lower the type
and get the AST type out. Instead, do the same thing that
TypeSubstCloner does.
Fixes rdar://problem/115355709.
This instructions marks the point where all let-fields of a class are initialized.
This is important to ensure the correctness of ``ref_element_addr [immutable]`` for let-fields,
because in the initializer of a class, its let-fields are not immutable, yet.
Codegen is the same, but `begin_dealloc_ref` consumes the operand and produces a new SSA value.
This cleanly splits the liferange to the region before and within the destructor of a class.
I was originally hoping to reuse mark_must_check for multiple types of checkers.
In practice, this is not what happened... so giving it a name specifically to do
with non copyable types makes more sense and makes the code clearer.
Just a pure rename.
The new instruction is needed for opaque values mode to allow values to
be extracted from tuples containing packs which will appear for example
as function arguments.
The new instruction wraps a value in a `@sil_weak` box and produces an
owned value. It is only legal in opaque values mode and is transformed
by `AddressLowering` to `store_weak`.
The new instruction unwraps an `@sil_weak` box and produces an owned
value. It is only legal in opaque values mode and is transformed by
`AddressLowering` to `load_weak`.